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Code decay is a gradual process that negatively impacts the quality of a software sys-

tem. Developers need trusted measurement techniques to evaluate whether their systems

have decayed. This dissertation aims to assess code decay by discovering software archi-

tectural violations. Our methodology uses Lightweight Sanity Check for Implemented

Architectures to derive architectural constraints represented by can-use and cannot-use

phrases. Our methodology also uses Lattix to discover architectural violations. We also

introduce measures that indicate code decay in a software system. We conducted two case

studies of proprietary systems (9 versions of System A and 14 versions of System B) to

demonstrate our methodology for assessing code decay. Resulting architectural constraints

and architectural violations were validated by the expert of each system. Our results show

that the net violations of System A increased from one version to other version even though

there were architecture changes. However, in System B, the number of net violations de-

creased after changes in the architecture.



The proposed code decay metrics can give managers insight into the process of soft-

ware development, the history of the software product, and the status of unresolved viola-

tions. Our results and qualitative analysis showed that the methodology was effective and

required a practical level of effort for moderate sized software systems. Code decay values

increase because of an increase in the number of violations over multiple versions.

We compared our code decay measures with definitions in the literature, namely cou-

pling metrics. In addition, our empirical results showed that coupling is qualitatively cor-

related with the size of a system as expected. We note that coupling is an opportunity for

architectural violations. We concluded that coupling is not consistently related to viola-

tions.

Key words: architectural constraints, architectural violations, code decay, coupling, main-
tainability, metrics, reverse engineering, software architecture, software evolution
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DEFINITIONS

Reverse engineering tool. A tool which is used to extract the module calls from source
code. It also detects the violations of architectural constraints. We used the Lattix
reverse engineering tool in this dissertation.

Conceptual architecture. The high level architecture diagram which shows the interac-
tions between modules in the form of boxes and arrows. Interactions are represented
by uses relationships.

Dependency structure matrix (DSM). Representation of all the module calls in the form
of matrix to visualize the organization of the project.

LiSCIA. Lightweight Sanity Check for Implemented Architectures. LiSCIA is a structured
manual evaluation method which identifies software architecture problems.

Architectural constraints. The architectural rules can be represented by can-use/cannot-
use phrases.

Architectural violations. An architectural violation is a particular piece of code that does
not follow specified architectural constraints or does not conform to the conceptual
architecture.

Code decay. Code decay is a gradual process that degrades the maintainability of the soft-
ware system. For example, code decay includes violations in coding standards, flaws
in implementing architecture of the system, violations in the design/code level per
unit time etc.

Net violations (Vnet,i). The number of violations discovered by Lattix for a version of
interest, i, in the software.

New violations (Vnew,i). The number of unique violations that occurred in a version of
interest, i, excluding the violations that occurred in the previous version, i − 1. For
the initial version of a system, the number of new violations is equal to the net
violations.

Solved violations (Vsolved,i). The number of violations that are missing from the previous
version, i− 1. For the initial version of a system, the number of solved violations is
equal to zero.
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Reoccurred violations (Vreoccur,i). The number of solved violations in the previous ver-
sions that reappeared in a version of interest i. For the initial version of a system, the
number of solved violations is equal to zero.

time (ti). The development time of one version of interest i.

Time (Ti). The cumulative development time from beginning of the project until the ver-
sion of interest i.

Code decay for version i (cdi). This is a measure of type of code decay for a given ver-
sion of interest i since the last release.

Net code decay (CDi). For a version of interest i, the net code decay, which is a measure
of a type of code decay, is defined as the net violations divided by the cumulative
development time from the beginning of the project when coupling was zero.

Overall code decay (CDn). The value of overall code decay, which is a measure of a type
of code decay, is calculated by considering from the initial version to the final version
of interest.

Coupling-Between-Modules (CBM ). CBM is the number of non-directional, distinct,
intermodule references.

Coupling-Between-Module-Classes (CBMC). CBMC is the number of non-directional,
distinct, intermodule class-to-class references.

Net CBM (CBMnet,i). The value of CBMat a given version of interest i.

Net CBMC (CBMCnet,i). The value of CBMC at a given version of interest i.

Change in CBM (∆CBMi). The difference of CBM values between the version of in-
terest i and its previous version.

Change in CBMC (∆CBMCi). The difference of CBMC values between the version
of interest i and its previous version.

Rate of change in CBMC (Rate∆CBMi). The difference of CBM values between the
version of interest i and its previous version divided by time since last release (ti).

Rate of change in CBMC (Rate∆CBMCi). The difference of CBMC values between
the version of interest i and its previous version divided by time since last release
(ti).

Net rate of CBM (RateCBMnet,i). For a version of interest i, the net rate of CBM is
defined as the net coupling between modules CBMnet,i divided by the cumulative
development time from the beginning of the project when coupling was zero.
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Net rate of CBM (RateCBMCnet,i). For a version of interest i, the net rate of CBMC is
defined as the net coupling between modules CBMCnet,i divided by the cumulative
development time from the beginning of the project when coupling was zero.
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CHAPTER 1

INTRODUCTION

Research in software evolution shows that violations of architecture and design rules

cause code to decay [18, 22, 39]. These violations are due to new interactions between

modules that were originally unintended in the planned design [39, 67]. Such violations

may be caused by adding new functionality, or modifying existing functionality to imple-

ment changing requirements or to repair defects. Such changes are inconsistent with the

planned architecture and design principles. As a result, the system becomes more com-

plex, hard to maintain, and defect prone [18, 51, 72]. Often, redesign or reengineering of

the whole system is the only practical solution for this problem [22]. The phenomenon

of gradual increase in software complexity due to unintended interactions between mod-

ules that are hard to maintain has been termed code decay and architectural degeneration

[18, 26]. In this dissertation, code decay refers to the rate of violations of architecture, de-

sign rules and coding standards over time that make software more difficult to modify. This

research focuses on violation of architectural constraints. The main goal of this dissertation

is to find ways to derive architectural constraints, to detect architectural violations, and to

assess code decay of software over multiple versions.

1



1.1 Research hypothesis

This section presents the research hypothesis of this work and the definitions of terms

used in our research hypothesis.

Given source code, a method can be developed to detect changes in the main-
tainability of a system by identifying the architectural violations over multiple
versions.

Maintainability is the degree of effectiveness and efficiency with which a product or

system can be modified by the intended maintainers [27]. We assume that architectural

violations degrade maintainability of a software system. Code decay is a gradual process

that degrades the maintainability of the software system. For example, code decay includes

violations in coding standards, flaws in implementing architecture of the system, violations

in the design/code level per unit time etc. In this dissertation, we quantify “code decay”

as the number of architectural violations per unit time in work weeks. The details of code

decay are presented in Section 4.5 of Chapter 4. An architectural violation is a particular

piece of code that does not follow specified architectural constraints or does not conform

to the conceptual architecture, represented by can-use/cannot-use rules.

1.2 Research questions

The major focus of this dissertation is identifying techniques and metrics to assess code

decay. The following are research questions to assess support for the research hypothesis.

1. What is an effective method to derive architectural constraints from the
source code?

2. What is an effective method to discover the extent of violations in archi-
tectural constraints?

3. What does the existence and repair of architectural violations over time
imply about code decay?
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4. How does our definition of code decay compare to definitions of code
decay in the literature, specifically, is our definition of code decay redun-
dant with coupling metrics?

Brunet et al. [6] used architecture documentation or the uses relationship diagram of

the older version of the system for considering the architectural constraints. They didn’t

use any formal method to derive architectural constraints. Researchers used architecture

conformance techniques such as reflexion models [48] and heuristics [43, 44]. The disad-

vantages of reflexion model requires successive refinements or iterations in the high level

mental model to discover the absences and divergences in the source code. The expressive-

ness of the reflexion models is limited to regular expressions but no other types of rules. In

addition, these models focus on the conformance of the design and implementation and do

not deal with different architecture styles (e.g., layered architecture). On the other hand,

the drawback of the heuristics technique is using many threshold values in heuristics. This

architecture conformance process based on the proposed heuristics should follow an itera-

tive approach — running the heuristics several times, starting with rigid thresholds. After

each execution, the new warnings should be evaluated by the architect. The selecting of

threshold values may takes several iterations. Our methodology overcome these disadvan-

tages and also assess code decay over multiple versions. In the systematic mapping study

of code decay, Bandi, Williams, and Allen [1] concluded that the coupling related metrics

were used to assess different forms of code decay. This dissertation proposed a comple-

mentary and alternative approach to assess code decay that uses architecture violations

over development time.

The contributions of this dissertation are the following.
3



1. We perform a literature review on code decay and conducted a systematic mapping
study on code decay that gives the classification of the code decay and its related
terms, classification of code decay detection techniques (human-based and metric-
based approaches), and the metrics used to measure the code decay.

2. We propose a methodology to derive architectural constraints that uses a reverse
engineering tool and LiSCIA. In our case studies we used Lattix as our reverse engi-
neering tool.

3. We propose a methodology that also uses a reverse engineering tool to discover ar-
chitectural violations and validate them. In our case studies we used Lattix as our
reverse engineering tool.

4. We also propose an alternative and complementary method to assess code decay
which uses code decay indicator measures (cdi, CDi, and CDn). The empirical
evidence and qualitative assessment shows our methodology is practical for deriv-
ing architectural constraints, discovering architectural violations, and assessing code
decay.

5. We qualitatively compare our code decay results with coupling metrics (CBM and
CBMC).

1.3 Relevance

Identifying and minimizing code decay is important to software engineering practition-

ers who are focused on improving software quality during software maintenance. Code

decay is an attribute that is evident only in retrospect. It is usually assumed that “decay” is

a gradual process that goes unnoticed until a crisis occurs. One can detect decay by com-

paring measured attributes from the past with current values, and determine that quality

has “decayed.” A challenge for researchers is to find ways of detecting incipient “decay”

well before a crisis develops.

Eick et al. [18] define code decay as code being harder to change than it should be.

They assessed code decay in a 15 year old real-time telephone switching software system

using change management data. The system consisted of fifty major subsystems and about

4



five thousand modules in C and C++. They used measures such as the number of changes to

a file, the number of files touched to implement a change, sizes of modules, the average age

of constituent lines of modules, fault potential, and change effort. Their analysis confirmed

that the system decayed due to successive modifications.

As another example, Godfrey and Lee [22] analyzed the open source project of the

Mozilla web browser release M9 by extracting architectural models using reverse engi-

neering tools. The Mozilla web browser (M9) consisted of more than 2 million lines of

source code in more than seven thousand header and implementation files in C and C++.

After a thorough assessment of architecture models, Godfrey and Lee concluded that either

Mozilla’s architecture has decayed significantly in its relatively short lifetime or it was not

carefully architected in the first place [22].

Software metrics characterize attributes of software. Product metrics measure attributes

of development artifacts, such as source code and design diagrams. Lines of code and

McCabe complexity are two of the best known metrics in this category. Process metrics

measure attributes of the development process and events associated with the product, such

as effort spent, defects discovered, and number of changes to code. Considerable research

has modeled relationships between attributes that can be measured early and those mea-

sured later [23, 57]. For example, a statistical model might predict which modules are

more likely to have bugs in the future, based on attributes measured early [57].
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1.4 Overview

The remainder of this dissertation is organized as follows. Chapter 2 describes the

related work. Chapter 3 explains the tools used in this research. Chapter 4 details our

proposed methodology for practitioners. Chapter 5 presents the case study design. Chapter

6 reports the System A case study results and its analysis. Chapter 7 presents the System B

case study results and its analysis. Chapter 8 discusses answers to our research questions

and Chapter 9 presents conclusions of our research.
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CHAPTER 2

RELATED WORK

This chapter focuses on background and related work of this research. Section 2.1

presents a systematic mapping study of the literature on empirical evidence of code decay.

Section 2.2 discusses architecture evaluation techniques. Section 2.3 presents related work

on architecture constraints.

2.1 Empirical evidence of code decay: A systematic mapping study

This systematic mapping study identifies detection techniques and metrics used to mea-

sure code decay. This section is based on a paper by Bandi, Williams, and Allen [1]. We

followed Kitchenham and Charters [35] approach to perform this study. A systematic

mapping study of code decay [1] aims to give a classification and thematic analysis of the

literature with respect to code decay detection procedures or methods by aggregating infor-

mation from empirical evidence. In contrast, the purpose of a systematic literature review

is often to “identify, analyze and interpret all available evidence related to a specific re-

search question” [34], [70, p.45]. We chose a mapping study to find the empirical evidence

of code decay because of our broad research questions.

The contributions of this review include presentation of various terms used in the litera-

ture to describe decay, a categorization of code decay detection techniques, and description
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of metrics used to identify code decay. The remainder of this section is organized as fol-

lows. Section 2.1.1 describes the details of the research methodology of mapping study.

Section 2.1.2 presents the results of the study. Sections 2.1.3 and 2.1.4 discuss the findings

and present conclusions of the mapping study respectively.

2.1.1 Study methodology

A systematic mapping study helps to provide a comprehensive overview of the liter-

ature and topic categorization in a variety of dimensions (such as architecture violations

and design rule violations). Kitchenham et al. [34] provide the key characteristics, the

differences between systematic literature reviews and mapping studies, and the benefits of

mapping studies in software engineering. The overview of our systematic mapping study

is shown in Figure 2.1. The following are the steps in our study.

1. Plan the study

2. Conduct the study

3. Report the study

The mapping study plan includes the following actions.

• Identify the need for the study

• Specify the research questions

• Develop the study protocol

The need for this mapping study is to identify and understand the scope of the empirical

research on code decay and its forms. This study clarifies the research and defines future

research questions. The major focus of this review is identifying techniques and metrics to
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Overview of systematic mapping study
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assess code decay without including a general literature on fault prediction performance in

software engineering [23], or the literature on fault prediction metrics [57]. Our research

questions are given below.

Research Question 1: What are the techniques used to detect code decay?
(i.e., How is it discovered?)

To answer the above question, we reviewed the literature and categorized code decay

detection techniques.

Research Question 2: What metrics are used to evaluate code decay? (i.e.,
How is it measured?)

To answer this question, a comprehensive tabular overview of code decay metrics is

presented that helps software engineering practitioners to assess the severity of code decay.

Following the Kitchenham and Charters [35] guidelines, Dybå and Dingsøyr [15, 16]

proposed a review protocol in the systematic review of empirical studies of agile software

development. We followed a similar approach to develop our study protocol because our

focus is on identifying empirical evidence of code decay. This review protocol includes

data sources and search strategy, inclusion and exclusion criteria, quality assessment cri-

teria, a data extraction form, and data mapping. Table A.1, Table A.2 and Table A.6 in

Appendix A, shows the inclusion and exclusion criteria, quality assessment criteria, and

data extraction forms respectively. Quality evaluation is not essential in mapping studies,

but we applied quality criteria assessment when selecting our primary studies.

Conducting the study means performing the study protocol which includes data sources

and search strategy. The goal of the search is to identify relevant papers describing code
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decay detection and measurement techniques and related concepts. We searched peer-

reviewed articles in the following electronic databases.

• ACM Digital Library

• Google Scholar

• IEEE Xplore Electronic Library

• Scopus (includes Science Direct, Elsevier, and Springer)

Figure 2.2 shows the review stages and number of studies selected at each stage. The

details of the search strategy are given in Appendix A.

The studies we found cover a range of research topics on architecture violations, design

defects and problems with source code. The numbers of publications using each particular

research method are listed in Table 2.1. Of these 30 primary studies, 18 were performed

on open source projects and 12 on proprietary systems. Table 2.2 presents the publication

channels of our primary studies. Most of the studies (75%) were published in conferences,

while others appeared in journals. These primary studies are noted as [Primary Study] in

the references.

Table 2.1

Studies by research method

Research method Number Percent
Case studies and archival studies 26 86
Controlled and quasi experiments 2 7
Experience reports and surveys 2 7

Total 30 100
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Table 2.2

Distribution of primary studies

Publication channel Number
—International Symposium on Empirical Software
Engineering and Measurement

4

—Working Conference on Reverse Engineering 4
—International Conference on Software Maintenance 4
—European Conference on Software Maintenance and
Reengineering

3

—The Journal of Systems and Software 2
—International Conference and Exhibition on Technology
of Object-Oriented Languages and Systems (TOOLS)

2

—IEEE Transactions on Software Engineering 1
—IEEE Software 1
—Software—Practice and Experience 1
—Communications in Computer and Information Science 1
—International Conference on Software Engineering 1
—IEEE International Software Metric Symposium 1
—Asia Pacific Software Engineering Conference 1
—IEEE Aerospace Conference 1
—International Conference on Software Engineering and
Knowledge Engineering

1

—International Workshop on Software Aging and
Rejuvenation

1

—Brazilian Symposium on Software Components,
Architectures and Reuse

1

Total 30
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2.1.2 Results

The results of our review are presented as answers to each research question defined

above. During our review of papers we encountered various terms in the literature that

relate to code decay. These terms are organized on the basis of architecture, design, and

source code. This terminology of code decay is shown in Figure 2.3. The definitions of

these terms are given in Table 2.3.

Research Question 1: What are the techniques used to detect code decay?
(i.e. How is it discovered?)

Table 2.4 gives the summarized view of the different strategies to detect code decay

and its categories. Detection of code decay is an important research area. The motivation

for the high level classification was the level of potential automation is a natural distinction

among the techniques. Research techniques can be broadly categorized as human-based

(manual) and metric-based (semi-automated) approaches.

2.1.2.1 Human-based approach

Human-based detection techniques consist of manual visual inspection of source code

and architectural artifacts.

Source code inspections are performed subjectively and are guided by questionnaires.

In the technique presented by Mäntylä et al. [45], developers manually inspected source

code to identify code smells. They identified three different code smells (duplicate code,

god class, and long parameter list) by filling out a web-based questionnaire. The assess-

ment was based on subjective evaluation on a seven-point numeric Likert scale. These
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Table 2.3

Definitions

Term Definition Reference
Code decay “A unit of code is decayed if it is harder to change

than it should be as reflected by COST of the
change, INTERVAL to complete the change, and
QUALITY of the changed software.”

[18]

Architectural
smells

“An architectural smell is a commonly (although not
always intentionally) used architectural decision that
negatively impacts system quality. Architectural
smells may be caused by applying a design solution
in an inappropriate context, mixing design
fragments that have undesirable emergent behaviors,
or applying design abstractions at the wrong level of
granularity.”

[21]

Architecture
degeneration

“A system is degenerated when the actual
architecture of the system deviates from the planned
architecture of the system.”

[25]

Architectural
drift

“Architectural drift is due to insensitivity about the
architecture. This insensitivity leads more to
inadaptability than to disasters and results in a lack
of coherence and clarity of form, which in turn
makes it much easier to violate the architecture.”

[55]

Architecture
erosion

“Architectural erosion is due to violations in
architecture. These violations often lead to an
increase in problems in the system and contribute to
the increasing brittleness of the system.”

[55]

Architecture
decay

“Architectural decay is the phenomenon when the
concrete (as-built) architecture of a software system
deviates from its conceptual (as-planned)
architecture where it no longer satisfies the key
quality attributes that led to its construction OR
when architecture of a software system allows no
more changes due to changes introduced in the
system over time that render it unmaintainable.”

[58]

Design erosion “It is the phenomenon in which the design of a
system becomes less and less suitable to
incorporating new features over time.”

[25]

Antipattern “Antipattern describes a recurring situation that has
a negative impact on a software project.”

[21]
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Table 2.3

(continued)

Term Definition Reference
Code
smells/design
smells

Code smells are anomalies in the source code that
contribute to the degradation of software design
maintainability.

[19]

Design decay “Design pattern decay is the deterioration of the
structural integrity of a design pattern realization.”

[28]

Grime “An increase in code within design pattern
participants that does not contribute to the ‘mission’
of individual design patterns. This added
non-pattern code is grime.”

[28]

Software
aging

The decline in the value of the software over time is
known as software aging.

[53]

results do not correlate with code smells found using source code metrics. Similarly, Schu-

macher et al. [64] detected code smells (god class) manually by inspecting source code.

In this study, the subjects were encouraged to “think aloud” as they filled out the ques-

tionnaires. They compared the subjective results with the metric values from automated

classifiers. In contrast to Mäntylä et al. [45], the results of their study increased the overall

confidence in automatic detection of smells. They also found that god classes require more

maintenance effort.

Inspection of architecture artifacts is done by subjective evaluations using checklists

and by comparing architecture models. Bouwers and van Deursen [5] proposed the Light-

weight Sanity Check for Implemented Architectures (LiSCIA) to identify architecture ero-

sion. They provide a checklist of 28 questions based on units of modules, module function-

ality, module size, and module dependencies. Developers evaluate implemented architec-
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tures by inspecting the architecture artifacts. The evaluation phase consists of answering

a list of questions concerning the architecture elements. LiSCIA provides corresponding

actions to the questions to help identify the erosion in an implemented architecture. We

used part of LiSCIA in our methodology.

Rosik et al. [59] assessed architectural drift by comparing the implemented architec-

ture with the original architecture of a system using a reflexion model [48]. Developers

create and update the code base and associated mappings to the original and implemented

architectures. This model displays the architecture in a pictorial representation with nodes

and edges. The participants “think aloud” and assess the inconsistencies with implemented

architecture to identify violations from the results of the model. Their case study confirmed

that architectural drift occurred during the evolution of the system.

Manual detection of code decay and its categories is tedious work. Moreover, this pro-

cess is time consuming, non-repeatable, and non-scalable. Moreover, manual detection of

code smells do not correlate with the results of source code metrics derived from automated

classifiers [45, 64].

2.1.2.2 Metric-based approach

In this subsection we review the literature that deals with semi-automated approaches to

detect code decay and its categories. The metric-based approach is further divided into four

subcategories. They are historical data analysis or mining software repositories, compar-

ison techniques, interpretation of rules, and model based techniques. These are discussed

below. The metric details used in these techniques are presented.
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The categories of historical data analysis types used for discovery of code decay are

change management data, architecture history, and defect-fix history.

In the change management subcategory, Eick et al. [18] dealt with the history of change

management data to detect code decay using code decay indices. Change management

history includes source code of the feature, modification request, delta, and change to

severity levels. Their statistical analysis on this data showed that an increase in the number

of files touched per change and decrease in modularity over time yields strong evidence of

code decay.

Under the architecture history subcategory, Brunet et al. [6] used the architectural dia-

grams from several versions of four different open source systems. They found violations

in the architectures by applying the reflexion model technique [48]. Using JDepend, Lat-

tix, and design documentation they extracted the high level architecture. They identified

more than 3000 architecture violations in the systems they analyzed. We use Lattix in our

methodology.

Hassaine et al. [24] proposed a quantitative approach called ADvISE to detect architec-

tural decay in software evolution. They used the architectural histories of three open source

systems. The architecture history consisted of architectural diagrams of different versions

that were extracted from source code using a tool. The extracted architecture is represented

as a set of triples (S, R, T) where S and T are two classes and R is the relationship between

two classes. They performed pair-wise matching of the subsequent architectures to identify

deviations in the actual architecture from the original architecture by tracking the number

of common triples. This procedure was accomplished by matching architectural diagrams
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using a bit-vector algorithm. An increase in the number of classes and number of common

triples over time was a good indicator of architecture decay.

In the defect-fix history subcategory, Li and Long [38] used defect-fix history to mea-

sure architecture degeneration. Defect-fix history consists of information about the release,

the component in which the defect occurred, and the number of files changed to fix the de-

fect. To analyze the defect history, they used multiple component defect metrics (e.g.,

percentage of defects that affected multiple components in a system and the average quan-

tity of files changes to fix a defect). After analyzing the defect-fix history of a compiler

system they found that an increase in the value of these metrics between two versions of the

system indicates that the architecture has degenerated. Ohlsson et al. [50] performed his-

torical data analysis on the defect-fix reports or source change notices of a large embedded

mass storage system to identify code decay. The defect-fix reports consist of description of

release and the defect that has to be corrected. Metrics that evaluated the average number

of changes, the size, the effort and the coupling were used to identify code decay. The

average number of changes and coupling metrics played a major role in identifying code

decay in this system. Their results showed that increases in values of these metrics indicate

code decay.

Under the source code metrics subcategory, researchers [58, 67, 68] compare the met-

rics of the source code over different versions of system using the original version to iden-

tify code decay. Tvedt et al. [67] compare the interactions between the mediator and

the colleagues in the mediator pattern between the two versions of Visual Query Interface

(VQI) system (VQI1 and VQI2). They used coupling between modules (CBM) to identify

21



unintended violations in the mediator design pattern and other misplaced violations. They

concluded that the actual design of the system veered from the planned design. Riaz et

al. [58] used coupling related metrics to compare two versions of a system. They found

that an increase in the value of coupling related metrics indicates architecture decay. Van

Gurp and Bosch [68] compared UML design diagrams of an ATM simulator from one

version to another version by calculating metrics related to packages, functions and inner

classes. Increases in the values of metrics, design decisions, and new requirements during

the evolution of the system were associated with design erosion.

Rule-based interpretations are divided into two types. They are 1) Metric heuristics

with threshold filters and 2) Domain specific language rules.

In the metric heuristics with threshold filters subcategory, several researchers [46, 51,

52, 56] used metric-based heuristics to detect code/design smells. Marinescu [46] proposed

a metric-based approach to detect code/design flaws in an object-oriented system. He

identified possible code smells (god class and data class) using the values of metrics as

heuristics. An example of one metric is given here: 1) The lower the Weight of Class

(WOC) value, the more the class is expected to be a data class and 2) The higher the WOC

value, the more the class is expected to be god class. Similarly, he used metric heuristics

on other metrics to detect both of these classes in an industrial case study. The threshold

values of the metrics are based on expert opinion.

Raţiu et al. [56] used heuristics and threshold values for each metric to detect god

classes and data classes. These threshold values are based on the experience of the analyst.

The results of this detection technique are suspected code smells. They analyzed different
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versions of software to obtain class and system history using the Evolution Matrix method.

Their results highlight that this method improves accuracy in detecting god classes and

data classes.

Olbrich et al. [51, 52] used heuristics with threshold filter rules to detect god classes,

brain classes, and shotgun surgery code smells. The threshold values used in the filtering

rules are based on the expert opinion. An example of a detection strategy for god class

using metrics is shown below. The presence of god class is represented by ‘1’. A ‘0’ value

indicates that there is no god class. The definitions of the metrics Equation (2.1) is given

in Table 2.5.

GodClass(C) =



1, ((WMC(C) ≥ 47)

∧(TCC(C) < 0.3)

∧(ATFD(C) > 5))

0, else

(2.1)

An analysis of different versions of Lucene and Xerces found that there is a large

correlation between the size of the system and the number of god classes, the number of

shotgun classes, and the number of brain classes. The preceding code smell techniques are

indicators of code decay.

Lindvall et al. [39] compares the interactions between the modules in two versions of an

Experience Management System (EMS1 and EMS2) to detect architectural degeneration.

They measured architecture degeneration using coupling between modules (CBM) and

coupling between module classes (CBMC). The values of CBM and CBMC were lower for
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the ESM2 version than the ESM1 version, which indicates developers avoided architecture

degeneration in the system.

Under the domain specific language rules subcategory, Khomh et al. [33] used the

DEtection and CORrection (DECOR) technique to detect code smells (god class). This

technique generates automatic detection algorithms to detect code smells or antipatterns

using rule cards. Rule cards are designed in a domain specific language with the combina-

tion of metrics and threshold values. The threshold values are defined based on in-depth

domain analysis and empirical studies. The authors analyzed the relation between code

smells and the changes in 9 releases of Azureus and 13 releases of Eclipse and concluded

that code smells do have higher change-proneness. Ciupke [8] proposed automatic detec-

tion of design problems by specifying queries to the information gathered from the source

code. The result of the query is the location of the problem in the system. These design

queries can be implemented using logical propositions. The heuristics used to build these

queries are based on the experience of the author. The author presented design violations

in different versions of industrial and academic systems.

The three model-based techniques are: 1) Probabilistic model 2) Graph model and 3)

Modularity model

In the probabilistic model subcategory ,Vaucher et al. [69] used a Bayesian network

approach to detect the presence of god classes. They built a Bayesian network model of the

design detection rules. This model is based on metrics used to characterize specific classes

and compute the probability that these specific classes are god classes. Metrics such as

number of methods, number of attributes of a class and other cohesion values are used as
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inputs to the model. This probabilistic model predicts all the occurrences of god classes

with a few false positives in different versions of Xerces and EclipseJDT.

In the graph model subcategory, Sarkar et al. [62] detected back-call, skip-call and

dependency cycle violations in a layered architecture using a module dependency graph.

The metrics used to detect these violations are: back-call violation index, skip-call viola-

tion index, and dependency violation index. In a dependency graph, back-call violations

can be detected if the modules of one layer call the modules in another layer except the

top layer. Skip-call violations can be detected by identifying the modules of one layer that

call the modules existing in other layers but not the modules in adjacent layers. Depen-

dency cycle violations are detected by the identifying strongly connected components in

the module dependency graph. In a strongly connected graph, there exists a path from each

vertex to every other vertex in a graph. The authors analyzed MySql 4.1.12 and DSpace

and identified these violations using module dependency graphs. Johansson and Host [30]

identified an increase in violations of design rules using graph measures of the architecture

of software product lines. Increase in the design rule violations from one version to other

version of the software is a good indicator of code decay.

In the modularity model subcategory, Wong et al. [71] detected software modularity

violations using their CLIO tool. This tool computes the differences between predicted co-

change patterns and actual co-change patterns to reveal modularity violations (co-change

patterns reflect classes that are often changed simultaneously). They analyzed 10 releases

of Eclipse JDT and 15 releases of Hadoop and identified four types of modularity violations
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that contribute to code decay. They are: cyclic dependency, code clone, poor inheritance

hierarchy, and unnamed coupling.

2.1.2.3 Metrics

This section presents the metrics used to detect code decay and its forms.

Research Question 2: What metrics are used to evaluate code decay? (i.e.,
How is it measured?)

We found that certain metrics are used to evaluate code decay. The results are summa-

rized in Table 2.5. Eick et al. [18] defined code decay indices: history of frequent changes,

span of changes, size, age, and fault potential to analyze historical change management

data. An increase in values for history of frequent changes for a class and span of changes

for modification record are indicators of code decay. Ohlsson et al. [50] found empirical

evidence of code decay using average number of changes in a module, and ‘coupling’ (how

often a module is involved in defects that required corrections extended to other modules).

Increase in the value of coupling and average number of changes in a module is a good in-

dicator of code decay. Lindvall et al. [39, 67] uses coupling between modules (CBM) and

couple between module classes (CBMC) to avoid architecture degeneration by identifying

violations in the mediator pattern. The increase in value of CBM and CBMC from one

version of the system to another indicates degeneration in architecture. Li and Long [38]

used various metrics related to defects spanning multiple components in a system. The

greater the values of these metrics, the more significant is the architecture degeneration.

Hassaine et al. [24] used metrics such as the number of classes and the number of

triplets to identify architecture decay by analyzing the architecture history using archi-
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Table 2.5

Metrics

Category/Metrics Relationship
Code decay
History of frequent changes: Number of
changes to a module over time [18].

Increase in number of changes to a
module is an indicator of code decay.

Span of changes: Number of files touched by
a change [18].

Increase in span of changes is an
indicator of code decay.

Coupling: How often a module involved in
defects that required corrections extended to
other modules [50].

Increase in coupling between
modules is an indicator of code
decay.

Size: Number of non-commented source code
lines from all the files in a module [18] (OR)
Sum of added LOC, deleted LOC, added
executable LOC and deleted executable LOC
[50].

Growth in size of the system over
time alone does not tell about the
code decay. It represents the
complexity of the system.

Fault potential: Number of faults that will
have to be fixed in a module over time [18].

Number of faults need to fixed itself
does not reveal evidence of code
decay. It is the likelihood of changes
to induce faults in the system.

Effort: Man hours required to implement a
change [18, 50].

This depends on the total number of
files touched to implement a change.

Architecture degeneration (modular level)
Coupling-between-modules (CBM): Number
of non-directional, distinct, inter-module
references [39, 67].

Coupling-between-module-classes(CBMC):
Number of non-directional, distinct,
inter-module, class-to-class references [39].

Increase in the values of CBM and
CBMC from one version to other
version of the system indicates
architectural degeneration.
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Table 2.5

(continued)

Category/Metrics Relationship
Architecture degeneration (defect perspective)
The average quantity of strong fix
relationships that a component has in a
system, the percentage of multiple -component
defects (MCD) in a system, the average MCD
density of components in a system, the average
quantity of components that an MCD spans in
a system, the average quantity of code changes
(fixes) required to fix an MCD in a system.
MCD means defects spanning multiple
components in a system.
Fixing an MCD requires changes in the
associated components. The relationship
among these components is a fix relation. [38]

The greater the values of these
metrics are, the more serious the
architectural degeneration is.

Architecture decay
Number of classes: Growth in size of the
application [24].

Number of triplets: Triplet(S,R,T) S and T are
two classes. R is the relation between S and T.
[24].

Increase in the number of classes and
number of common triplets from one
version to another version by
architectural diagram matching is a
good indicator of architectural decay.
Matching of architecture diagrams is
automated using bit-vector algorithm.

Data Abstraction Coupling(DAC): Number of
instantiations of other classes within a given
class [58].

Message Passing Coupling (MPC): Number
of method calls defined in methods of a class
to methods in other classes [58].

Increase in the values of DAC, MPC
and CBO from old version to latest
version of the system becomes harder
to maintain and indicates architecture
decay.

Coupling between objects (CBO): Average
number of classes used per class in a package
[58].
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Table 2.5

(continued)

Category/Metrics Relationship
Design pattern decay (Modular grime)
Strength of coupling: Determined by
removing the coupling relationship between
classes (can be persistent or temporary) [63].

Persistent relationship between
classes is more prone to decay
compared to temporary association.

Scope of coupling: Demarcates the boundary
of a coupling relationship (can be internal or
external) [63].

Grime originating from external
classes is more prone to decay than
internal classes.

Design pattern decay (Modular grime)
Direction of coupling: Number of inbound
and out-bound relationships [63].

Increase in number of in-bound
classes is more difficult to remove
than out-bound classes.

Design erosion
Number of packages, Number of inner classes,
Number of functions, Non-commented source
code statements, New (inner) classes, New
functions, Removed (inner) classes. Metrics
related to packages, functions, and inner
classes. [68].

Increase of these metrics between
different versions of system indicates
design erosion. However, not all
changes are reflected in the metrics.
It also depends on how design
decisions accumulate and become
invalid because of new requirements.

Software aging
LOC, CountCodeDel, countLineCodeExe,
CountLineComment, CountDeclFileCode,
CountDeclFileHeader, CountDeclClass,
CountDeclFunction, CountLineInactive,
CountStmtDecl, CountStmtExe,
RatioCommentToCode. Metrics related to
program size (amount of lines of code,
declarations, statements, and files) [13].

Program size metrics are positively
correlated with software aging.

Architecture Violations
Back-call violation index (BCVI), Skip-call
violation index (SCVI), Dependency cycle
violation index (DCVI). These metrics are
used to detect back-call, skip-call and
dependency cycle violations in layered style
architecture. [62].

If BCVI/SCVI/DCVI is 1, then no
violation.
If BCVI/SCVI/DCVI is 0, then there
is violation.
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Table 2.5

(continued)

Category/Metrics Relationship
Code smells (god class)
Access to Foreign Data (ATFD): The number
of external classes from which a given class
access attributes, directly or via accessor
methods. Inner classes and super classes are
not counted. [46, 51, 52, 56, 66]

Weighted Method Count (WMC): WMC is the
sum of static complexity of all methods in a
class. [46, 51, 52, 56, 66]

Tight Class Cohesion (TCC): TCC is defined
as the relative number of directly connected
methods. [46, 51, 52, 56, 66]

Increase in the number of god classes
over time is an indicator of code
decay. However, there are some
harmless god classes also. (Ex: Class
that has functionality of parser.)

Number of Attributes (NOA): Number of
attributes in a class. [56]

Code smells (data class)
Weight of Class (WOC): Number of attributes
in a class. The number of non-accessor
methods in a class divided by the total number
of members of the interface[46, 56, 66]

Number of Public Attributes (NOPA): The
number of non-inherited attributes that belong
to interface of a class. [46, 56, 66]

Number of Accessor Methods (NOAM): The
number of non-inherited accessor methods
declared in the interface of a class [46, 56, 66].

Increase in the number of data
classes over time is an indicator of
code decay.

Weighted Method Count (WMC): The sum of
the statical complexity of all methods in a
class [66]
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Table 2.5

(continued)

Category/Metrics Relationship
Code smells (brain class)
WMC and TCC are same as described under
god class detection. [52]

Number of brain methods (NOM): Number of
methods identified as brain methods in class.
LOC in a method, cyclomatic complexity of a
method, maximum nestinng level of control
structures within the method and number of
accessed variables in a method.[52]

Increase in the number of brain
classes over time is an indicator of
code decay.

Code smells (shotgun surgery)
Changing Methods (CM): The number of
distinct methods that call a method of a class.
[46, 56]

Changing Class (CC): The number of classes
in which the methods that call the measured
method are defined. [46, 56]

Increase in the number of shotgun
surgery smells over time is an
indicator of code decay.

Code smells (Feature envy)
Access to Foreign Data (ATFD): The number
of external classes from which a given class
accesses attributes, directly or via accessor
methods. Inner classes and super classes are
not counted. [66]

LAA: The number of attributes from the
method’s definition class, divided by total
number of variables accessed.[66]

Increase in the number of feature
envy type code smells over time is an
indicator of code decay.

Design smells (Extensive coupling and intensive coupling)
CINT: The number of distinct operations
called from the measured operation. [66]

CDISP: The number classes in which the
operations called from the measured
operations are defined in, divided by
CINT.[66]

Increase in coupling over time is an
indicator of code decay.
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Table 2.5

(continued)

Category/Metrics Relationship
Architecture degradation
Graph measure: It is a function that denotes
the deviation of the architecture structure
compared to the wanted structure defined by
design rules. [30]

Increase in the number of design rule
violations makes architecture
degraded and an indicator of code
decay.

tectural diagram matching. Riaz et al. [58] used coupling related metrics such as Data

Abstraction Coupling (DAC), Message Passing Coupling (MPC), and Coupling between

objects (CBO) and by comparing these values between two versions of the system. The

increases in the values of these metrics indicate architecture decay of the system.

Grime is the phenomenon of accumulating unnecessary code in a design pattern. It is

a form of design pattern decay. The three levels of grime are class grime, modular grime

and organizational grime [28]. Schanz and Izurieta [63] use metrics of strength, scope, and

direction of coupling to classify modular grime. Van Gurp and Bosch [68] assessed design

erosion using metrics related to packages, functions, and inner classes. Increase in the

values of these metrics between different versions of the systems indicate design erosion.

Design erosion is not fully explained by the metrics. They found that design erosion is

also based on the accumulation of design decisions that are not implemented due to new

requirements. Sarkar et al. [62] used violation indices (BCVI, SCVI, and DCVI) to detect

back-call, skip-call, and dependency cycle violations in a layered architectural style. If the

value of BCVI/SCVI/DCVI indices is 1 then, there is no corresponding violation in the
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architecture. If BCVI/SCVI/DCVI value is zero, then there is corresponding violation in

the architecture.

We found empirical evidence that an increase in the number of code smells from one

version to another is an indicator of code decay. The code smells were identified using

using well-defined metrics [46, 51, 52, 56]. These metrics are listed in Table 2.5. The

threshold values of the metrics is based on expert opinion and empirical analysis. An

increase in the number of code smells during the evolution of software is an indicator of

code decay. Cotroneo et al. [13] used metrics related to the program size (such as amount

of lines of code, declarations, statements and files) to predict the relation between software

aging trends and software metrics.

2.1.3 Discussion

In this mapping study we identified 30 primary studies related to our research questions.

In this section we address the implications of our results and provide the limitations of our

study.

The detection strategies we found in this review are categorized into human-based

(manual) and metric-based (semi-automated) approaches. In manual processes, code de-

cay is typically identified by answering questionnaires and using checklists. This approach

is time consuming and non repeatable for larger systems. Moreover, it is expensive.

Metric-based approaches involve less human intervention in identifying code decay.

Among the metric-based approaches, historical data analysis is useful only if the history of

the system is available. In comparison techniques, the architecture of one version is used
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as a baseline for comparison to subsequent architecture version. Metrics are compared

to one another at the modular level. These metric values help to understand and avoid

architecture degeneration. Module metrics are helpful in identifying structural violations

in design patterns and architectural styles. Applying heuristics with threshold filtering

rules is a prominent technique to identify code/design smells. The disadvantage of this

technique is threshold values are determined by expert opinion. Using expert opinion for

threshold values does not apply to all the systems uniformly in identifying code decay.

A model-based approach uses Bayesian models where the probability is computed using

manually validated data. In metric-based approaches there is less human intervention and

they are scalable to larger systems.

From our observations, historical data analysis is a predominant technique to identify

code decay. From the current state-of-the art of code decay detection techniques, we can

infer that there is an opportunity for more research on automated detection techniques of

code decay. Automated detection means automatic decision-making in identifying viola-

tions in architectural rules, design rules, and source code standards.

Metrics that identify module and class coupling are predominantly used in the liter-

ature to detect code decay. Our review did not identify metrics related to complexity of

the system itself to detect code decay. Coupling related metrics such as Coupling between

modules (CBM), Coupling between module classes (CBMC), Data Abstraction Coupling

(DAC), Message Passing Coupling (MPC), Coupling between objects (CBO), number of

files coupled for a change, strength of coupling, scope of coupling, and direction of cou-
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pling give evidence of code decay. It is important to measure coupling when assessing

code decay.

Code decay degrades the quality attributes of the system. Some of the quality attributes

include maintainability (hard to change the code) [18, 51, 64, 67, 72], understandability

(difficult to understand the code) [39, 51, 64], and extendability (hard to add new function-

ality) [67].

We also observed different factors, both developer-driven and process-driven lead to

code decay. Developer-driven decay involves:

• Inexperienced/novice developers [64]

• Lack of system’s architecture knowledge [59]

• Developers focused on pure functionality [64]

• Developers apprehension due to system complexity [59]

• Impure hacking (carelessness of the developers)

Process-driven decay includes difficulties related to:

• Missing functionality [59]

• Violation of object-oriented concepts (data abstraction, encapsulation, modularity
and hierarchy) [64]

• Project deadline pressures [51, 64]

• Changing and adding new requirements [18, 39, 67]

• Updating new software and hardware components [18]

• Ad hoc modifications without documentation [62]

Studies that concentrated on the relation between the design/code smells and archi-

tecture degradation [30, 41, 42] provide evidence of how design/code smells affect the
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architecture degradation. In aspect-oriented programming, modularity anomalies scattered

among different classes are usually architecturally-relevant smells. Such architecturally-

relevant smells are difficult and expensive to fix in the later stages of software development

[42]. Macia et al. [41] suggested that developers should promptly identify and address the

code smells up front, otherwise code anomalies increase the modularity violations and

cause architecture degradation.

One of the limitations of the review is bias in selection of our primary studies. To

ensure that the selection process was unbiased, we developed a research protocol based on

our research questions. We selected our data sources and defined a search string to obtain

the relevant literature. Since the software engineering terms are not standardized, there is a

risk that the search results might omit some of the relevant studies. To reduce this risk, we

did a bibliography check of every article we selected as a primary study. The key limitation

in this study is that only researchers participated in the selection and analysis of the papers.

We mitigate this risk by having discussions on the inconsistencies raised while conducting

our study. Another potential limitation is in excluding papers that do not emphasize time

or successive versions of a system when evaluating quality at a point of time (e.g., current

version).

2.1.4 Conclusions

Our systematic mapping study that targeted empirical studies of detection techniques

and metrics is used to find code decay. A total of 30 primary studies were selected using a

well-defined review protocol. The three contributions of this study are:
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• First, we categorize different terms used in the literature that leads to code decay
with respect to the violations in architectural rules, design rules and source code
standards.

• Second, we classify the code decay detection techniques into human-based and
metric-based approaches. Subcategories of these approaches are also discussed.

• Finally, we present a comprehensive tabular overview of metrics used to identify
code decay and their relationship with code decay.

Metrics identified to detect code decay help to assess the severity of code decay and

to minimize it. Coupling related metrics are widely used and helpful at identifying code

decay.

2.2 Architecture evaluation techniques

Architecture evaluation of software is to analyze the architecture to identify potential

architectural risks and to verify that the quality requirements have been addressed in the

design [14]. Existing architecture evaluation methodologies are divided into early and late

evaluations. Early evaluations focus on designed architectures whereas late evaluations

focus on implemented architectures after the source code of the system is available. The

different architecture evaluation techniques and their goals are listed in the Table 2.6.

Researchers used architecture evaluation techniques for different goals such as risk

identification and suitability analysis, sensitivity and trade-off analysis, validating a de-

sign’s viability for insights, assessing software architecture for reuse and evolution, change

impact analysis, predicting maintenance effort, evaluating the ability of software architec-

ture to achieve quality attributes, predicting context relative flexibility, risk assessment,

analyzing flexibility for reusing. We chose LiSCIA with a different goal to derive architec-

ture constraints because LiSCIA pre-defines a notion of quality in terms of maintainability.
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Table 2.6

Architecture evaluation techniques

Architecture evaluation technique Goal
—Scenario based Architecture
Analysis Method (SAAM)

Risk identification and suitability analysis
[31]

—Architecture Tradeoff Analysis
Method (ATAM)

Sensitivity and tradeoff analysis [32]

—Active Reviews for Intermediate
Design(ARID)

Validating design’s for viability insights [10]

—SAAM for Evolution and
Reusability (SAAMER)

Assessing software architecture for reuse
and evolution [40]

—Architecture-Level Modifiability
Analysis (ALMA)

Change impact analysis and predicting
maintenance effort [2]

—Scenario-Based Architecture
Reengineering (SBAR)

Evaluate ability of SA to achieve quality
attributes [3]

—SAAM for Complex Scenarios
(SAAMCS)

Predicting context relative flexibility, risk
assessment [37]

—Integrating SAAM in
domain-Centric and Reuse-based
development

Analysing flexibility for reusability [47]

—Light weight Sanity Check for
Implemented Architectures (LiSCIA)

Detection of architecture erosion [5]
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2.3 Architectural constraints

Software systems often refer to an architectural model and are organized into several

subsystems and modules that follow some design rules. These design rules constitute the

constraints on architectural styles and software design patterns. Developers may violate

these constraints from one version to another. This is the starting point of architecture

degeneration that causes code decay and makes maintenance difficult. Managing architec-

tural violations for each version during software development and maintenance can prevent

architectural degeneration. Below are a couple of examples that show the violations of de-

sign rules to architectural styles and design patterns.

Figure 2.4 shows a simple layered architecture that consists of layers and modules

within those layers. Following are some of the constraints imposed on the layered archi-

tecture [9].

• Layer dependencies are not transitive. If layer A is allowed to use layer B and layer
B is allowed to use layer C, it does not automatically follow layer A can access layer
C.

• Each module within in a layer is allowed to access other modules within the layer.

• If a layer accesses another layer, all modules defined with public visibility in the
accessed layer are visible within the accessing layer.

A violation can occur when a developer attempts to allow a module from Layer C to

access data from Layer A, which is not defined in our rules (marked as X in Figure 2.4).

This small violation represents an initial sign of architecture degeneration.

The Mediator design pattern is often used when interactions among objects are unstruc-

tured, complex, and their reuse is difficult [20]. Figure 2.5 shows an example of a Mediator

pattern and potential violations (marked as X). If tasked to implement new functionality
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Figure 2.4

Violations in layered architecture style

for aCheckbox, a developer might complete the task using several interactions between

the other colleagues (e.g., aListBox, aButton, anEntryField) but violates the rules of the

Mediator design pattern. This implementation results in tight coupling between colleagues

and makes it more difficult to understand the architecture of the system. A correct imple-

mentation is marked as dashed line in Figure 2.5. All these constraints can be represented

using can-use/cannot-use phrases.

2.4 Architecture conformance techniques

This section presents the architecture conformance techniques and compares how our

methodology is different from existing techniques. There are at least three architecture
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Violations in mediator design pattern

conformance techniques. They are reflexion models, using heuristics, and domain specific

languages.

Murphy, Notkin, and Sullivan [48] proposed the software reflexion model, a technique

to compare the high level model and source model to discover the convergence (relations

in high level model is followed by the source model), divergence (relations not in high

level model exist in the source model), and absence (relations in high level model does not

exist in the source model) in the design. The following are the steps in the reflexion model

process.

1. The high level mental model of the system is drawn purely based on the developer’s
experience.

2. The source model is extracted by the reverse engineering tool from the source code
or by collecting information during the system’s execution.

3. The developer described a mapping of files between the extracted source model and
the high level mental model.
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4. Using the above three inputs, the developer computes a software reflexion model that
provides a comparison between the two models.

5. The developer investigates/interprets the reflexion model to derive information that
helps the engineer to reason about the software engineering task.

Maffort et al. [43, 44] proposed ArchLint to discover architectural violations using

heuristics. ArchLint is another method used to discover architecture violations. This

method uses heuristics to discover suspicious dependencies in the source code to detect

divergences and absences. Heuristics use threshold values of the dependency insertion

rate, dependency scattering rate, dependency deletion rate and dependency direction rate.

Basically the heuristics are implemented as SQL queries. In addition to these techniques,

researchers [17, 65] used domain specific languages to focus on confirming the planned

architecture and to express in a customized syntax. These constraints are defined from the

planned architecture.

However, the reflexion model requires successive refinements or iterations in the high

level mental model to discover the absences and divergences in the source code. The ex-

pressiveness of the reflexion models is limited to regular expressions but no other types

of rules. In addition, these models focus on the conformance of the design and imple-

mentation and do not deal with different architecture styles (e.g., layered architecture).

On the other hand, the drawback of the ArchLint methodology is using a large number

of threshold values in heuristics. This architecture conformance process based on the pro-

posed heuristics should follow an iterative approach — running the heuristics several times,

starting with rigid thresholds. After each execution, the new warnings should be evaluated

by the architect. Then, the architect may also decide to perform many iterations of the
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conformance process, with more flexible thresholds. On the other hand, domain specific

languages need more detailed constraints.

Our methodology uses a conceptual architecture, dependency structure matrix [61], and

‘LiSCIA process’ [4, 5] to derive the architecture constraints from the implemented soft-

ware. Architecture violations are detected using the Lattix tool based on the derived rules.

In this methodology, the expressiveness of rules is limited to can-use and cannot-use con-

straints rather than regular expressions. We believe that it is easy for the software engineer-

ing practitioners to write the architecture rules of their system in can-use and cannot-use

phases. Rules for design patterns (e.g., mediator pattern or adapter pattern) and architec-

ture styles (e.g., layered style or Model-View-Controller) also can be written in can-use

and cannot-use phrases. We also examine the evolutionary nature of architectural viola-

tions using the number net violations, number of solved violations over different versions

of software. Finally, we propose measures to indicate code decay and compare the results

with coupling metrics CBM and CBMC.
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CHAPTER 3

TOOLS

This chapter presents different tools we used for our case studies.

3.1 Lattix

Lattix1 is a commercial reverse engineering tool used for the following purposes in our

case studies.

• To extract the conceptual architecture from the given source code

• To identify dependencies at the class level using a dependency structure matrix

• To construct can-use and cannot-use architecture rules in XML

• To discover architectural violations in the source code

• To generate a ‘uses’ report at the class level and package level

Our case studies uses Lattix Architect version 9.0.3 and Lattix Web version 9.0.3. Re-

searchers may use any reverse engineering tool other than Lattix, that has the above men-

tioned capabilities.

3.2 LiSCIA

Lightweight Sanity Check for Implemented Architectures (LiSCIA) is a structured man-

ual evaluation method for implemented architectures [4, 5]. It focuses on the maintainabil-

ity quality attribute of a system which results in discussing issues in the architecture and
1http://www.lattix.com/
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suggests refactoring. LiSCIA uses a questionnaire to evaluate the architecture. It also con-

stitutes a list of actions to make possible adjustments to the architecture. We use LiSCIA

to evaluate the architecture of a system (extracted from source code by Lattix) and derive

can-use/cannot-use rules. Bouwers et al. [4, 5] used LiSCIA to identify architecture erosion

in the implemented systems and suggests possible actions and guidelines to improve the

architecture of the system. In this research, we used LiSCIA for deriving architectural con-

straints and we are not making any modifications or corrections to the architecture. Details

of LiSCIA are given in Appendix B.
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CHAPTER 4

METHODOLOGY FOR PRACTITIONERS

This chapter presents our approach to assess code decay by finding software architec-

tural violations. To apply our methodology, the practitioner needs the following tools.

• A tool to extract the architecture of the system.

• A tool to calculate the architecture dependencies.

• LiSCIA questionnaire [4, 5].

• A tool to identify architectural violations for a given set of architectural constraints
represented by can-use or cannot-use phrases.

In this research, we used Lattix for extracting the architecture dependencies, and for

identifying architectural violations. Given a software system that has multiple versions of

interest, the following procedure presents the major steps in our methodology.

1. While there is an unanalyzed refactored version of interest

(a) Choose an initial or refactored version that is representative of the architecture.
(Section 4.1)

(b) Choose the subsequent versions of interest and note their dates.

(c) Derive the architectural constraints based on initial or refactored version. (Sec-
tion 4.2)

(d) While not done with the versions of interest

i. Discover current architectural violations in a version of interest. (Sec-
tion 4.3)

(e) End while

(f) Identify new violations and solved violations in each version. (Section 4.4)
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(g) Assess code decay over multiple versions. (Section 4.5)

2. End while

Section 4.1 gives the required context for our methodology. Section 4.2 describes how

to derive architectural constraints. Section 4.3 details how to discover architectural viola-

tions. Section 4.4 shows how to find the new, solved, and reoccurred violations. Section 4.5

explains how to assess code decay over multiple versions of software.

4.1 Choose an initial or refactored version

The following are the system characteristics required to apply our methodology to as-

sess code decay.

• The system must consist of at least two versions of software.

• The source code of all the versions of interest must be available through a revision
control system.

• The version history of system must include the dates of versions of interest.

• An expert of the system must be available.

4.2 Derive architectural constraints

This section presents the step by step procedure for an analyst to derive the architectural

constraints for a given version. Figure 4.1 shows the methodology for deriving architectural

constraints.

The roles of the participants when applying our methodology are the following.

• Evaluator, the person who reviews the system (perhaps from outside of the project
team)

• Expert, a person with in-depth knowledge about the system (such as lead developer,
software architect or project manager)
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Figure 4.1

Deriving architectural constraints

• Analyst, a person who facilitates the evaluator and expert by providing required ar-
tifacts and taking notes during discussions and who analyzes the data to assess code
decay.

The same person can fulfill multiple roles and multiple people can fulfill the same roles.

In order to get the most out of the evaluation, at least two persons should be involved in

order to create discussion. One important element of our methodology is that an expert of

the system must participate in deriving architectural constraints.

In our methodology we use LiSCIA [4, 5] to derive architectural constraints. LiSCIA

has two major phases. 1) Start-up phase and 2) Evaluation phase. The following are the

steps to derive architectural constraints.

1. Analyst prepares the following software artifacts before the start-up phase of LiSCIA.

• Source code of a system in an IDE (e.g., Eclipse) from the repository using the
version control system.
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• System’s conceptual architecture and the dependency structure matrix derived
from the source code using the Lattix tool.

2. Start-up phase: The following are the steps during the start-up phase of LiSCIA.

(a) Analyst explains the roles to the participants in the study.

(b) Analyst asks the participants to skim the LiSCIA questionnaire, which is given
in Appendix B.

(c) Analyst provides the artifacts (source code, conceptual architecture, and depen-
dency structure matrix) to the participants.

(d) The participants review the organization of the source code and draw the high
level architecture diagram. During this step, they may use the artifacts provided
by the analyst.

(e) The participants define the components (logical groups of functionality) of the
system.

(f) The participants define the name patterns for each component defined in the
above step.

(g) The participants list the technologies used in the system.

3. Evaluation phase: Given the overview report from the start-up phase of LiSCIA, the
following steps are performed by the participants to derive architectural constraints.

(a) Answer the LiSCIA questionnaire and note the architectural constraints by eval-
uating the component dependencies, namely draft constraints. These are repre-
sented in can-use/cannot-use phrases.

(b) The draft constraints are verified by the expert resulting in the final architectural
constraints.

4.3 Discover current architectural violations

Given the architectural constraints of a system, the following are the steps to discover

the architectural violations from the derived constraints. Figure 4.2 shows the methodology

for discovering architectural violations.

1. Analyst manually inputs the architecture rules to Lattix and generates an XML file.

2. Analyst imports the XML file to Lattix.

3. Repeat the following.

49



 

 

 

 

 

 

Report 

violations 

Architecture 

rules in XML 
Lattix 

 

Architectural 

constraints 
Validate 

violations 

Modify architectural constraints 

to accept desirable features 

Source 

 code Lattix 

Conceptual 

architecture 

Dependency 

Structure Matrix 

LiSCIA 

 

Architectural 

constraints 

Figure 4.2

Discovering architectural violations

(a) Analyst runs Lattix to identify architectural violations on all versions of inter-
est.

(b) The expert validates the architectural violations identified by Lattix in the above
step to determine whether violations are in fact desirable features of the system,
rather than violations.

(c) If any architectural constraints are not correct

i. Modify the constraints so that desirable features are no longer flagged as
violations by Lattix.

4. Until the expert identifies no more desirable features among the violations.

The discovered violations in each version, i, are called net violations (Vnet,i). Net

violations is defined as the number of violations discovered by Lattix in a version of interest

i, in the software.
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4.4 Find new, solved, and reoccurred violations

This section defines new violations, solved violations, and reoccurred violations of the

architecture and list the steps how to find these violations. The following are the quantities

that are calculated from the list of validated violations.

• New violations (Vnew,i): Number of unique violations that occurred in a version of
interest i, excluding the violations that occurred in the previous version, i−1. For the
initial version of a system, the number of new violations is equal to the net violations.

• Solved violations (Vsolved,i): Number of violations that are missing from the previous
version, i− 1. For the initial version of a system, the number of solved violations is
equal to zero.

• Reoccurred violations (Vreoccur,i): Number of solved violations in the previous ver-
sions that reappeared in the version i. For the initial version of a system, the number
of solved violations is equal to zero.

The steps to find the above defined terms are given below.

1. Analyst finds the solved violations by comparing the net violations from one version
to next version of a system.

2. Analyst finds the new violations by comparing the net violations from one version
to next version of a system.

3. Analyst finds the reoccurred violations by determining the life cycle of the violations.

(a) Analyst assigns the unique violation ID for each violation.

(b) Given the violation is detected in version n, it is easy to find the existence of
the violation in later versions by checking the list of net violations.

The analyst may write parsers to analyze the net violations and find Vnew,i, Vsolved,i, and

Vreoccur,i with less effort.
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4.5 Assess code decay over multiple versions

This section defines the terms, formulas used in code decay assessment and details the

steps to assess code decay over multiple versions of a software. For a given version, the

time is calculated as, the number of working days divided by 5 (because one week has five

working days). The calculation1 of work weeks excludes weekends and public holidays in

the United States. The following are the terms defined for a version of interest i.

• datei: Date of a version of interest i.

• date0: Start date of the project or date of previous refactoring.

• time (ti): The development time of one version of interest i.

ti = datei − datei−1 (4.1)

where ti is measured in work weeks.

• Time (Ti): The cumulative development time from the beginning of the project until
the version of interest i.

Ti = datei − date0 (4.2)

where Time (Ti) is also measured in work weeks.

• Code decay for version i (cdi): This is a measure of type of code decay for a given
version of interest i since the last release. The value of code decay for one version
of interest is calculated by Equation (4.3).

cdi =
Vnew,i − Vsolved,i

ti
(4.3)

where cdi is measured in violations/week.

• Net code decay (CDi): For a version of interest i, the net code decay, which is
a measure of a type of code decay, is defined as the net violations divided by the
cumulative development time from the beginning of the project when coupling was
zero. The net code decay value is calculated by Equation (4.4)

1http://www.timeanddate.com/date/duration.html?m1=06
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where
CDi =

Vnet,i

Ti

(4.4)

where CDi is measured in violations/week.

• Overall code decay (CDn): The value of overall code decay, which is a measure
of a type of code decay, is calculated by considering from the initial version to the
final version of interest. The value of overall code decay is calculated by considering
from the initial version to the final version of interest. Suppose a system has a total
of n versions of interest, the overall code decay is calculated as:

CDn =

∑n
i=1 Vnew,i −

∑n
i=1 Vsolved,i

Tn

=
Vnet,n

Tn

(4.5)

where CDn is measured in violations/week.

The following are the steps to assess code decay over multiple versions.

1. Analyst collects the data for net violations (Vnet,i) for all the versions of a system
from the Lattix.

2. Analyst calculates the values of ti and Ti for the versions of interest i using Equa-
tions (4.1), and (4.2)

3. Analyst calculates the value of code decay cdi for version by version using Equa-
tion (4.3).

4. Analyst calculates the value net value of code decay CDi for a version of interest i,
using Equation (4.4).

5. Analyst computes the overall code decay CDn of the system using Equation (4.5).
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CHAPTER 5

CASE STUDY DESIGN

A case study is defined as an empirical method aimed at investigating a phenomenon

within a specific time and space [60, 70]. A case study is usually an observation without

manipulating any variables. The difference between case studies and experiments is that

experiments sample over the variables that are being manipulated to discover cause effect

relationships. In this research, our research questions did not explore any cause and effect

relationships.

A case study design or protocol is important for its success. Case study protocol in-

cludes specific objectives, selection criteria for case and subjects, study procedure, data

collection procedure, analysis procedure, and validation procedure. A pilot study is con-

ducted on a small scale to identify the pitfalls in the methodology and evaluation of the

research [35, 60, 70]. This chapter presents our case study design protocol and the lessons

learned from our pilot study.

5.1 Research goals

The goal of our case studies is to collect empirical evidence to address the following

research questions.

1. What is an effective method to derive architectural constraints from the
source code?
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2. What is an effective method to discover the extent of violations in archi-
tectural constraints?

3. What does the existence and repair of architectural violations over time
imply about code decay?

4. How does our definition of code decay compare to definitions of code
decay in the literature, specifically, is our definition of code decay redun-
dant with coupling metrics?

5.2 Criteria for selecting cases and subjects

The systems we selected for our case studies are proprietary systems. The roles of the

participants in our case studies are explained in Chapter 4. Our case studies are limited to

proprietary systems because accessibility to the expert (architect or team lead) of the sys-

tem is an important element of our methodology. Other requirements are: 1) systems with

frequent short-term commits and 2) multiple versions. Compilable source code is neces-

sary to get all the runtime dependencies in that particular version of software. The source

code of the system should be available in repositories to extract the conceptual architecture

and dependency structure matrix using Lattix. The versions of the target system must be

released and in production.

5.3 Study procedure

The case study procedure is interleaved with the methodology procedure explained

in the Chapter 4. The researcher fulfilled the role of analyst. The following procedure

presents the major steps in the design of our case studies.

1. Researcher derives the architectural constraints by following the steps 1.a, 1.b, and
1.c given in Chapter 4.

2. Researcher interviews the participants for validating the procedure for deriving ar-
chitectural constraints after the session. The interview guide is shown in Table 5.1.
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3. Researcher identifies the architectural violations by following the steps 1.d and 1.e
given in Chapter 4.

4. Researcher categorizes the architectural violations in each version. (Section 5.3.1)

5. Researcher assesses code decay by following the steps 1.f and 1.g given in Chapter
4.

6. Researcher computes the values for following metrics (Section 5.3.2)

• Coupling-Between-Modules (CBM )

• Coupling-Between-Module-Classes (CBMC)

7. Researcher calculates rate of coupling metrics (CBM and CBMC) for multiple
versions. (Section 5.3.3)

Table 5.1

Interview guide

Demographic Information
–What is your role in the project (not your job title)?
–How many years of experience do you have in software industry?
–What is the size of your project team?
–What kind of programming languages were used in your projects?
–Have you dealt with constraints in the projects that you implemented? If
so, which programming language did you use?
Session questions
–Do you think that you missed evaluating something from the architecture?
If so what?
–What is the level of your confidence in deriving the architectural
constraints?
1. Very Low 2. Low 3. Medium 4. High and 5. Very High
Process feedback
–Do you have any recommendations to change/include in our survey?
–Do you have any other suggestions in the whole process of evaluating our
technique?
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5.3.1 Categorize architectural violations

As stated in Chapter 4, an architectural constraint is represented as a can-use and

cannot-use rules. A violation of a constraint is when a module uses a module that should

not. The architectural violations we discovered fall into one of the following five types of

uses relationships.

• Class Reference — Reference to a class name

• Method call — The three subcategories in the method call are:

– Virtual (regular Java method)

– Static

– Interface (calling a method on a Java interface)

• Inherits — The two subcategories in the inheritance category are:

– Inherits

– Implements

• Data Member Reference: Reference to a field in class or interface

• Constructs — The two subcategories of the constructor call category are:

– constructor without arguments

– constructor with arguments

5.3.2 Compute coupling metrics

This section defines the coupling metrics that we analyzed and the steps to compute

those metrics. The following are the definitions of the metrics from Lindvall, Tesoriero,

and Costa [39].

• Coupling-Between-Modules (CBM): CBM is the number of non-directional, dis-
tinct, intermodule references.

• Coupling-Between-Module-Classes (CBMC): CBMC is the number of non-directional,
distinct, intermodule class-to-class references.
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To evaluate our results, we considered using the Coupling Between Objects (CBO) [7]

metric which can be calculated by several tools (for example Understand tool1). However,

Lindvall, Tesoriero, and Costa [39] explain the disadvantages of using CBO. CBO in-

cludes the coupling among the objects inside the modules which is intramodule coupling.

Since intramodule coupling is an element of cohesion, we are not using CBO for our eval-

uation purposes. Therefore, we are interested in intermodule coupling and adopted the

CBM and CBMC metrics [39].

Figure 5.1 illustrates an example of an architecture of a hypothetical system. An arrow

indicates a ‘uses’ relationship between two classes. In measuring CBM , the intramodule

couplings are ignored (arrows from A1 to A2, A2 to A1, C1 to C4, C3 to C4, B1 to B3, B2

to B4, and D3 to D2). In addition, only distinct coupling between modules are considered

(only one arrow is considered among D2 to B5 and B5 to D2). Therefore Figure 5.1 is

reduced to Figure 5.2. To calculate CBM , the directions of the arrows are ignored. The

value of CBM for the modules A, B, C, and D in Figure 5.1 is 2, 3, 3 and 2 respectively.

When calculating the CBMC of modules, the number of intermodule class references

are considered. In addition to the class references, distinct couplings are considered and

directions of the arrows are ignored. The CBMC values for modules A, B, C and D are 3,

4, 4, and 3 respectively as shown in Figure 5.3.

In our case studies, we excluded all the external library modules because it is expected

that several modules use external libraries. We considered a package to be a module. To

drill down and conduct deeper analyses we considered both CBM and CBMC metrics.

1http://www.scitools.com/index.php
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Example architectural design
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When calculating the CBM and CBMC values for nested packages, we considered all

the packages to be at the same level. We also considered interfaces while calculating the

CBMC value. The CBM and CBMC of the whole system is the sum of the values of

all modules divided by 2, avoiding double counting.
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Figure 5.3

Intermodule class references for the example system

The following are the steps we performed to calculate the CBM and CBMC values

for larger systems.

1. Researcher runs Lattix tool and generate the ‘uses’ report at the class level or package
level for a given version of source code. The generated report is saved as comma
separated values (*.csv) file format. This report has a source and target columns.
The source and target columns has class names.

2. Then the researcher converts the (*.csv) file in into *.txt format.

3. Researcher inputs that *.txt file to the two Java programs (CBMCalculator and
CBMCCalculator) which computes the CBM and CBMC values.
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The source code of the CBMCCalculator and CBMCalculator is given in Appendix

E.1 and E.2 respectively. To calculate CBMC, the CBMCCalculator parses the class level

‘uses report’ to extract source and target using comma as a delimiter. This program deletes

duplicate relationships of the source and target classes, which eliminates the bidirectional

‘uses’ relationships. Then, the tool deletes the within module relationships if the the source

and target have the same package names. The final CBMC value for the whole system

is calculated by adding the CBMC all the modules and dividing by 2. In a similar way,

CBMCalculator calculates CBM values are calculated using a ‘uses’ report for the pack-

age level.

5.3.3 Calculate the rate of coupling metrics

This section defines the terms and formulas used in calculating the coupling metrics.

The following are the terms defined for a source code version of interest i.

• Net CBM (CBMnet,i): The value of CBM at a given version of interest i.

• Net CBMC (CBMCnet,i): The value of CBMC at a given version of interest i.

• Change in CBM (∆CBMi) : The difference of CBM values between the version
of interest i and its previous version.

∆CBMi = CBMnet,i − CBMnet,i−1 (5.1)

• Change in CBMC (∆CBMCi) : The difference of CBMC values between the
version of interest i and its previous version.

∆CBMCi = CBMCnet,i − CBMCnet,i−1 (5.2)

• Rate of change in CBM (Rate∆CBMi): The difference of CBM values between
the version of interest i and its previous version divided by time (ti). The value
of rate of change in CBM is calculated by Equation (5.3) using Equations (4.1),
and (5.1).
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Rate∆CBMi =
∆CBMi

ti
(5.3)

• Rate of change in CBMC (Rate∆CBMCi): The difference of CBMC values be-
tween the version of interest i and its previous version divided by time (ti). The value
of rate of change in CBMC is calculated by Equation (5.4) using Equations (4.1),
and (5.2).

Rate∆CBMCi =
∆CBMCi

ti
(5.4)

• Net rate of CBM (RateCBMnet,i): For a version of interest i, the net rate of CBM
is defined as the net CBM divided by the cumulative development time from the
begining of the project when coupling was zero. The net rate of CBM is calculated
by Equations (4.2), and (5.5)

RateCBMnet,i =
CBMnet,i

Ti

(5.5)

• Net rate of CBM (RateCBMCnet,i): For a version of interest i, the net rate of
CBMC is defined as the net CBMC divided by the cumulative development time
from the begining of the project when coupling was zero. The net rate of CBMC is
calculated by Equations (4.2), and (5.6)

RateCBMCnet,i =
CBMCnet,i

Ti

(5.6)

5.4 Data collection procedure

In this research, we used one of the data collection techniques called the “direct method”

where the researcher is in direct contact with the participants of the case study and collects

data in the real time [60, 70]. Researcher asked participants to “think aloud” and to draw

the high level architecture and to define the components of the system. The researcher

noted the discussions between the participants. Noting these discussions helped gather the

insights into the system in the case study. After deriving the architectural constraints, the
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researcher used the interview guide shown in Table 5.1 to collect the demographic infor-

mation, session questions, and feedback on the whole process. Researcher in the role of

analyst collected architectural violations of different versions using Lattix.

5.5 Analysis procedure

The results of the architectural constraints and architectural violations were qualita-

tively analyzed by interviewing the participants to extract insights into the system. The

participants also validated the violations to identify any desirable features (i.e. mistakes in

the constraints). The results of code decay were analyzed by using the following plots.

• Number of classes vs. version of the system

• Number of interfaces vs. version of the system

• Number of net violations (Vnet,i) vs. version of the system

• Number of solved violations (Vsolved,i) and new violations (Vnew,i) vs. version of the
system

• cdi vs. time

• CDi vs. time

5.6 Validation procedure

Our code decay results were validated by using coupling metrics (CBM and CBMC).

Since code decay is violations over time, we consider rate of coupling to evaluate our

results qualitatively by using the following plots.

• CBMnet,i vs. version of the system

• CBMCnet,i values vs. version of the system

• Rate∆CBMi vs. time

• Rate∆CBMCi vs. time
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• RateCBMnet,i vs. time

• RateCBMCnet,i vs. time

• CBM vs. size

• CBMC vs. size

• CBM vs. violations

• CBMC vs. violations

5.7 Pilot study

This section explains the pilot study and the lessons learned (strengths and weak-

nesses). The goals of the pilot study were the following.

• To make any enhancements in the procedure for deriving architectural constraints
using Lattix and LiSCIA questionnaire. Also any enhancements to the questionnaire.

• To make any improvements in selecting the target systems and human subjects.

The system under pilot study was Verifier, which is a small scale Java based propri-

etary tool to detect AutoCAD errors in the geometrical structure of a building or a ship.

Our requirements for a system under pilot study were the following. The system must be

a proprietary system to get access to the developers/team leads/architects of the system. A

system with frequent commits allows study of different revisions of the system. The source

code of the system should be available in the repositories to extract the conceptual archi-

tecture and dependency structure matrix using the Lattix tool. We selected six revisions of

Verifier to assess code decay. The details of the system is shown in Table 5.2.

In this case study, researcher, analyst, and evaluator roles were fulfilled by the same

person. An expert role was fulfilled by the team lead of the project. The expert had 25 years

of experience in developing several software systems in various programming languages
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including Fortran, C, Java, C#, and Python. The evaluator, who had 5 years of programing

experience in Java.

Table 5.2

Pilot system details

Attribute Description
System Verifier
Time period Sept. 2009–Sept. 2011
Total number of commits 60
Revisions under study 6
LOC 6k LOC

The following procedure presents the major steps in the pilot study.

1. Researcher prepares artifacts (conceptual architecture and dependency structure ma-
trix) using Lattix.

2. Researcher and the expert derives the architectural constraints of the older version of
the pilot system using LiSCIA questionnaire.

3. Interview the participants using the interview guide given in Table 5.1.

The rest of this section describes the strengths and weaknesses of the methodology

based on the experience of pilot study. The scope of our methodology is:

• The architectural constraints are derived by the expert of the software system.

• The expressiveness of the constraints is limited to the can-use and cannot-use rules.

• Lattix which is used in our methodology, gives only the syntactic dependencies by
using *.class files of the software developed in Java.

A strength of our methodology is to derive the architectural constraints at the package

level and the class level. Having the architecture rules at the package and class levels is
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helpful to analyze the architecture of the project. The expert and the evaluator of the project

derived the constraints of the software by evaluating the questionnaire given in the LiSCIA

process. The start-up phase of the LiSCIA process was helpful to the participants to recap

the system organization and the way software is implemented. In the review phase, the

participants evaluated the circular dependencies, expected dependencies and unexpected

dependencies and listed their constraints. The time taken by the participants to derive ar-

chitectural constraints using the LiSCIA process was from 1 to 1.5 hours for a small scale

system. Another good aspect of the methodology was discovering the architectural vio-

lations from the derived constraints using the uses relationship between the classes from

the project. The results of this pilot study (constraints report from LiSCIA and the inter-

view session with the expert) provided evidence that deriving architectural constraints and

discovering violations can extend to larger scale projects. We confirmed that architectural

violations are an indicator of code decay rather than an architecture metric based subjective

agreement which we considered earlier.

We identified the following weaknesses of our draft methodology. Validating the dis-

covered architectural violations with the expert was missing from the pilot study. We found

that this step is important to distinguish the features of the system mistakenly tagged as dis-

covered violations. Our draft methodology did not categorize architectural violations. We

concluded that categorization of architectural violations will be helpful, but is deferred to

future work. In the pilot study, we analyzed the system as a whole. However, we found

that analyzing the system by considering major changes in the architecture during devel-

opment gives more insight into the software. We also found that compilable source code
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is required in order to find architectural dependencies in the system. In order to assess

code decay that is most interesting to software engineers, the target systems must be in

production, whereas our pilot system was never released for production.
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CHAPTER 6

CASE STUDY OF SYSTEM A

This chapter reports the System A case study. Section 6.1 gives the goals of the case

study. Section 6.2 describes the case and subjects who participated in the study. Section

6.3 presents the results and analysis of our research questions.

6.1 Objective

The goal of conducting this case study was to apply our methodology to a moderate

size system, collecting empirical evidence to address the research questions given in Sec-

tion 1.2.

6.2 Case and subjects selection

The system under study was System A, which is a proprietary Web based system devel-

oped using the Java Spring framework by a research center at Mississippi State University.

The team size had varied over the life of the project, but average size was 2 developers with

1 database administrator. The software development methodology was most similar to ag-

ile. Our selection of the participants and different versions under study was based on the

selection criteria given in (Section 5.3.1) in Chapter 5. We selected nine released versions

of System A to assess code decay. The details of the System A are shown in Table 6.1.
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The evolution of classes and interfaces over different versions of the System A is shown in

Figure 6.1 and Figure 6.2 respectively.

Table 6.1

Details of System A

Attribute Description
System System A
Time period June 2011– April 2014
Versions under study 9
LOC (version 9) 55k

In this case study, the roles of evaluator, expert, and analyst were fulfilled by different

individuals. An expert role was fulfilled by the team lead of the project. The expert of

System A had 8 years of experience in developing several software systems in Java and

JavaScript. The evaluator, who participated in deriving the architectural constraints, had

3.5 years of programing experience in Java.

6.3 Results and analysis

This section presents the results of the case study. We executed the methodology given

in Chapter 4. The researcher fulfilled the role of analyst.

6.3.1 Derive architectural constraints

This section presents architectural constraints derived with the help of participants.

At the beginning of the case study, the analyst provided the Java source code of the

first release version (version 1) of System A in an Eclipse IDE, a conceptual architecture
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Figure 6.1

The number of classes in System A per version
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The number of interfaces in System A per version
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and a dependency structure matrix to the participants. The conceptual architecture and the

dependency structure matrix were derived from source code by Lattix. These artifacts are

shown in Figure C.1 and Figure C.2 in Appendix C.

During the start-up phase of LiSCIA, the expert of the system drew the high level ar-

chitecture of the given version of the System A discussing with the evaluator with the help

of the given conceptual diagram and the source code in the Eclispe IDE. The high level

architecture drawn by the participants is shown in Figure C.3 in Appendix C. Then, the

participants defined the components of the system.

In the start-up phase of LiSCIA, the participants define the components of the system.

The source code of the software was divided into the logical groups of functionality. In this

way, different views on the architecture can be explored, which can lead to more insight

and a better understanding of the implemented architecture. Participants divided the system

into five components. They are the following.

• Graphical User Interfaces (GUI)

• Processing of Input

• Persistence

• Security

• Utilities

During the start-up phase of LiSCIA, the participants also define the naming-patterns.

For each component, participants determined source files belong to it by defining a pattern

on the directory-/file names of the source-files. In general a single file should only be

matched to a single component, but in this case, the architecture was not well defined
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for the project at the time of this version, the same name-pattern matches three different

components. The name-patterns for the components are the following.

• Graphical User Interfaces (GUI) – *.jsp

• Processing of Input – *controller

• Persistence

1. Model – *trpdd.entities.*
2. DAO – *JpaRepository

3. Lucene – *trpdd.entities.*

• Security – *trpdd.security.*

• Utilities – *trpdd.util.*

At the end of the start-up phase of LiSCIA, participants listed the inventory of tech-

nologies. Participants listed the technologies used within the system. They used MySql,

Hibernate, Maven, Spring framework, Compass (Lucene), Jackson JSON, Apache Tiles,

Liquibase, Apache PDFBox, Apache Taglibs, Joda time, C3PO, Comet, and Apache DS.

In the review phase of LiSCIA, the participants used the start-up phase information to

evaluate the implemented architecture with a goal of deriving the architectural constraints.

The participants mostly concentrated on the evaluation of component dependencies. To

get the details of the dependencies, they used the dependency structure matrix given by the

analyst. The participants discussed circular dependencies, unexpected dependencies, and

which component depends on most of the other components. The participants listed the

following software architectural constraints represented by can-use or cannot-use phrases.

• Controllers can use persistence

• Persistence cannot use controllers
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• Controllers can use entities

• Entities cannot use controllers

• Lucene cannot use entities

• Entities cannot use lucene

• Utilities can be used statically anywhere

• Security cannot use persistence

• Utilities can use entities

• GenericJpaRepository cannot use entities

There are three major changes in the architecture due to adding new functionality or

changing features due to change in requirements in three different versions (3, 7, and 8) of

the system.

Major architecture enhancements:

• Added validation package (version 3)

• Added jobs package (version 7)

• Added exception package (version 8)

The participants evaluated the architecture of those versions and listed the following

architecture rules. There were no constraints removed by later versions, but new constraints

were added.

For System A version 3

• Controllers can use security

• Security cannot use controllers

• Controllers can use validation

• Validation cannot use controllers
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• Validation cannot use persistence

For System A version 7

• Jobs can use entities

• Jobs can use persistence

• Entities cannot use jobs

• Persistence cannot use jobs

For System A version 8

• Controllers can use exceptions

• Persistence can use exceptions

• Exceptions cannot use controllers

• Exceptions cannot use persistence

The above software architectural constraints were derived by the expert and evalua-

tor. These constraints were validated by asking session questions of the participants. The

questions are listed in Table 5.1 in Chapter 5. The participants were very confident when

deriving the architectural constraints. The results of the interview session is discussed in

Chapter 8. The time taken to derive the constraints was 1.5 to 2.0 hours including the in-

terview sessions. Once again the constraints were reviewed by the expert to finalize them

before discovering violations.

6.3.2 Discover architectural violations

Using the derived architectural constraints, an XML file was generated by Lattix by

manually entering the constraints, as input to Lattix. Lattix discovered the architectural

violations by comparing the the rules with the usage relationships between the modules.
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The architectural violations we discovered fall into one of the following five types:

• Class Reference: Reference to class name

• Invokes: Method call — there are three subkinds: virtual (regular Java method),
static and interface (calling a method on a Java interface)

• Inheritance — there are two subkinds: inherits, implements

• Data Member Reference: Reference to a field in class or interface

• Constructs: Constructor call — there are two subkinds: constructor without argu-
ments, constructor with arguments

The net violations (Vnet,i) for all the versions of System A were discovered by Lattix

and the values of Vnet,i are given in Table 6.2. Figure 6.3 shows that class reference type

violations are the most numerous of violation in various versions of System A. Virtual

invocation is second numerous type of violation in System A. Interface invocation and

data member reference types of violations are in order of highest to lowest percentage of

violations.

Table 6.2

Violation count over multiple versions of System A

Version i 1 2 3 4 5 6 7 8 9
Vnet,i 3 11 19 21 27 28 30 37 60
Vsolved,i 0 0 0 0 0 3 0 0 10
Vnew,i 3 8 8 2 6 4 2 7 33
Vreoccur,i 0 0 0 0 0 0 0 0 0

From Figure 6.1 and Figure 6.2, the growth of the system from versions 1 through 6

were due to the initial development phase being in progress. The growth in versions 7
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through 9 were mainly due to to adding functionality due to change in requirements from

the client. Figure 6.4 shows the number of net violations increase from one version to an-

other version throughout the life of the system. The dotted lines represents that there was

a major change in architecture in the system. This happened because of newly developed

features or change in requirements. One such example is adding the validation pack-

age. The expert explained that increase in the net violations from one version to another

version although they had a strong idea of the project from the beginning, but compro-

mises are made when giving priority to achieving client’s desired functionality in a given

timeframe.
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6.3.3 Find new, solved, and reoccurred violations

After discovering the net violations (Vnet,i) in System A, we manually compared these

violations from one version to next version and found the new violations (Vnew,i), solved

violations (Vsolved,i), and reoccurred violations (Vreoccur,i). Table 6.2 shows the counts of

Vnew,i, Vsolved,i, and Vreoccur,i in all the versions of the System A. We assigned an unique

ID for each violation to track the life cycle of that violation in different versions. In this

study, once the violations were solved in a version, that violation did not reappeared in later

versions. Therefore Vreoccur,i is zero for all versions in this case study. Figure 6.5 shows

the solved violations were 0 except in versions 6 and 9. In the sixth and ninth releases,

developers refactored the source code by moving the functionality from one method to a

different method. They also renamed and changed the signatures of a few methods. This

increase in number of solved violations in version 6 and 9. An example of violation in

version 8 is solved in version 9 and is given is given below.

In version 8, one of the architectural constraints is persistence cannot use

entities. The below given is a method in GenericJpaRepository.

public List<T> executeLuceneSearch(Map<String,
Object> requestParams, BaseEntity entity,
int pageSize){
// Actual code....

}

In version 9, the actual code is moved to a method executeLuceneSearch(Map-

<String,Object> requestParams, BaseEntity entity, int pageSi-

ze, HttpServletRequest request) and this method is called in the above method

as shown in below code. This caused an increase in solved violations. Since there was no
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change in the actual code and the violation remained same, it was considered as a new

violation in version 9.

public List<T> executeLuceneSearch(Map<String,
Object> requestParams, BaseEntity entity,
int pageSize{

return executeLuceneSearch(requestParams, entity,
pageSize, null);

}

Developers actually didn’t fix the architectural violations, but the functionality was

moved to a new method which caused new violations. This is the reason for increase in

new violations in version 9 even though there was an increase in solved violations. They

compromised the architecture by giving priority to the client’s desired functionality in a

given timeframe. Figure 6.5 shows that the new violations occurred in all the versions of

System A. The change in architecture in the system didn’t solve violations as the developers

just concentrated only on the functionality.

6.3.4 Assess code decay over multiple versions

The released dates of the versions of System A were collected from the revision control

system. For a given version i, the number of working days since the last release, time (ti)

in work weeks, and the cumulative development time from the beginning of the project

for each version (Ti), also in work weeks, were calculated as explained in Section 4.5

in Chapter 4. The values of ti and Ti for each version is shown in Table 6.3. We then

computed the code decay values for each version (cdi), the net code decay (CDi) using

Equations (4.3) and (4.4) respectively. The values of cdi and CDi are given in Table 6.4.
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New and solved violations in System A

Table 6.3

Values of development time of System A

Version i 1 2 3 4 5 6 7 8 9
Working days 18 29 14 15 15 28 48 85 462
time ti (weeks) 3.6 5.8 2.8 3.0 3.0 5.6 9.6 17 92.4
Time Ti (weeks) 3.6 9.4 12.2 15.2 18.2 23.8 33.4 50.4 142.8

Table 6.4

Code decay values of System A

Version i 1 2 3 4 5 6 7 8 9
cdi 0.83 1.3 2.8 0.67 2.0 0.17 0.21 0.41 0.25
CDi 0.83 1.17 1.55 1.38 1.48 1.17 0.89 0.73 0.42
violations per week
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An ideal system follows all the architectural constraints without any architectural vio-

lations. Therefore the ideal value of code decay for such system is 0 violations/week.

Figure 6.6 show the code decay values (cdi) for each release in System A. The cdi

measurements in this graph can give a manager insight into the the process of software

development. “Did the development of this version cause further code decay?” The code

decay value (cdi) varied from 0.67 to 2.8 violations/week for the first twenty weeks of the

development time of System A. When compared to an ideal system, the code decay values

(cdi) of all the versions were positive because of the increase in number of new violations

compared to solved violations. The system A expert explained that the developers focused

on the functionality of the software and did not concentrate on the architectural constraints.

The code decay values of versions 1 through 6 were fluctuating simply due to activity in

the initial development phase.

After the first twenty weeks of development time of the system, the cdi values of ver-

sions 6–9 were mainly reduced due to changes in requirements that were received from

the client. The cdi values varies from 0.17 to 0.25 violations/week. When compared to

an ideal system’s code decay value of 0 violations/week, the code decay value (cdi) of

versions 7–9 versions in System A decreased compared to the earlier versions. This was

because of solved violations of those versions. The changes in the architecture did not

cause any decrease in the code decay values.

Figure 6.7 show the net code decay (CDi) values of each version from the start date

of the project. The CDi measurements in the graph give a manager insight into the status

of the software product from its start date. “Is the product’s average code decay worse or
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Figure 6.6

Code decay for each release in System A

better than the past version?” The net code decay values are positive because it considers

only net violations over the time period since the beginning of the project Ti. The net

code decay value of System A decreased at version 6 and thereafter CDi was less than

1.0 violation/week for later versions. For an ideal system, the net code decay value is 0

violations/week.

The overall code decay (CDn) of the System A at the end of the study period was 0.42

violations/week. The value of CDn was calculated using Equation (4.5) and the value is

given in Equation (7.1)

CDn =
73− 13

142.8
=

60

142.8
= 0.42 violations/week. (6.1)
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Code decay since beginning of the System A

This measure gives a value of code decay for the current system. “Does the current

system have unresolved violations and what has been the average rate of violations, namely

code decay?” There was on average, approximately one violation for every two weeks. To

bring the value of overall code decay value to 0 violations/week, developers could refactor

the source code according to the architectural constraints and remove the architectural

violations. Another option is to modify the constraints to accommodate any desirable

features implemented in the source code. In this case study, the expert did not modify any

constraints to remove violations. The expert considered this as a technical debt [11, 12, 36,

49], planning to solve these violations in the future.
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6.3.5 Comparison of results

This section presents measurements of coupling metrics (CBMC, CBM ) to compare

with code decay values. We chose coupling metrics to evaluate code decay results be-

cause Lindvall et al. claimed that increase in these metrics from one version to another

version results in architecture degeneration [39]. In this case study, we excluded all the

external library modules because it is expected that several modules use external libraries.

We considered a package to be a module. To drill down and conduct deeper analyses we

considered both CBM and CBMC metrics. When calculating the CBM and CBMC

values for nested packages, we considered all the packages to be at the same level. Ta-

ble 6.5 presents the values of coupling metrics of different versions of System A. The unit

of measure of CBM and CBMC is connections. These values are calculated based on the

formulas given in the Section 5.3.3 in Chapter 5. The values of ti and Ti for each version

is shown in Table 6.3. We analyze our results qualitatively, because the versions of the

System A are not statistically independent samples and are too few for statistical analysis.

Therefore statistical analysis was not appropriate.

The graphs of net coupling between modules (CBMnet,i) and net coupling between

module classes (CBMCnet,i) over the versions of System A are shown in Figure 6.8 and

Figure 6.9 respectively. We observe that, the CBMnet,i values increased from one version

to the next version. CBMCnet,i values of System A also increased from one version to

the next version except in version 4. This is because developers modified a module in the

system as a part of the deliverable which reduces the the value of CBMCnet,i. The major

changes in the architecture did not help to decrease the coupling values as the developers
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Table 6.5

Coupling values of System A

Version i 1 2 3 4 5 6 7 8 9
CBMnet,i 28 31 36 36 37 39 45 43 52
∆CBMi 28 3 5 0 1 2 6 -2 9
Rate∆CBMi 7.78 0.52 1.79 0.00 0.33 0.36 0.63 -0.12 0.10
RateCBMnet,i 7.78 3.30 2.95 2.37 2.03 1.64 1.35 0.85 0.37
CBMCnet,i 159 267 291 205 413 475 540 594 910
∆CBMCi 159 108 24 -86 208 62 65 54 316
Rate∆CBMCi 44.17 18.62 8.57 -28.67 69.33 11.07 6.77 3.18 3.42
RateCBMCnet,i 44.17 28.40 23.85 13.49 22.69 19.96 16.17 11.79 6.37

concentrated on the functionality of the system and not the design or the architecture of the

system.

The scatter plots of net coupling metrics CBMnet,i, CBMCnet,i versus the size of the

System A are in Figure 6.10 and Figure 6.11 respectively. The size of the system is the

sum of the total number of classes and interfaces in a given version of the system. These

plots help to compare the size and coupling of System A. The dots in these plots represent

version of the System A. The linear trend line in these plots shows that the coupling was

related to the size of the system. As the system size increased CBMnet,i and CBMCnet,i

increased. This can be expected, because as the size of the system increases there is more

opportunity for coupling connections.

The code decay values (cdi) for each version is shown in Figure 6.6 above. We compare

the cdi values with the rate of change in coupling metrics (Rate∆CBMi and Rate∆CBM -

Ci) over time. Figure 6.12 and Figure 6.13 show the plots of Rate∆CBMi and Rate∆CB-

MCi over time. From the Figure 6.6 above, the code decay values of all the versions were
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positive before and after the changes in architecture. This was because of an increase in

new violations (Vnew,i) and decrease in number solved violations (Vsolved,i) which means

the system was decaying.

Now, let us compare these code decay values (cdi) of each version with Rate∆CBMi

and Rate∆CBMCi values. From the Figure 6.12, the rate of change in coupling between

modules (Rate∆CBMi) values for last two versions versions of System A are negative

and 0 respectively. This means that coupling was less less in later versions compared to the

earlier versions. Also, the cdi value of the version 4 was reduced because developers mod-

ified a module. The values of Rate∆CBMi for version 4 also is less than that of earlier

versions. There was an increase in cdi values before the version 4. But there is fluctuation

in the Rate∆CBMi between the earlier versions of the system. This was because devel-

opers concentrated on functionality during those releases. Therefore, we observe that the

Rate∆CBMi results were not qualitatively correlated with the cdi results.

From the Figure 6.13 we observe that there were both positive and negative values

of Rate∆CBMCi which means the system’s coupling between module classes varied

between the versions. The Rate∆CBMCi decreases before the fifth version, where as

cdi values increases before version 5. Therefore, before version 5, the cdi values and

Rate∆CBMCi are not qualitatively correlated with each other. After the version 5, from

the Figure 6.6 the code decay values reduces and is less than 0.5 violations/week. The

Rate∆CBMCi values in Figure 6.13 has a gradual decrease in all the versions after ver-

sion 5. Therefore, we can say that the rate of change in coupling and the code decay values
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were somewhat qualitatively correlated after the version 5. Therefore for the System A,

the results of Rate∆CBMi and Rate∆CBMCi are inconsistent with cdi.
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Rate∆CBMi for each release in System A

The net code decay (CDi) values of all the versions of System A in Figure 6.7 were

positive before and after the changes in the architecture. We observe that the CDi values

fluctuated before the fifth version and thereafter were reduced. Before the version 4, the

net code decay values increases and after the version 5, the net code decay of the system

was reduced.

Figure 6.14 and Figure 6.15 show the results of RateCBMnet,i and RateCBMCnet,i

over time. Both the values RateCBMnet,i and RateCBMCnet,i were positive and were

reduced after version 5. From these graphs, we observe that there was a decrease in the rate

89



CRMS CBMC 

CRMS_CBMCTime.pdf 

 

 

CRMS_CBMCt1.pdf 

 

 

 

 

 

 

 

-40.00

-20.00

0.00

20.00

40.00

60.00

80.00

0 50 100 150

R
a
te
∆
C
B
M
C

i

Time (Ti) in work weeks

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150

R
a
te

C
B

M
C

n
et

,i

Time (Ti) in work weeks

Figure 6.13

Rate∆CBMCi for each release in System A

of net coupling values (RateCBMnet,i and RateCBMCnet,i) and the net code code decay

values CDi after the version 5. Before version 5, there was fluctuation in the values of net

code decay (CDi) which was not observed in the rate of net coupling values. Therefore

both the results of RateCBMnet,i and RateCBMCnet,i were qualitatively correlated with

the net code decay (CDi) results after the version 5 and were not qualitatively correlated

before version 5. The reason is developers concentrated only on the functionality of the

system during these versions.

Figure 6.16 and Figure 6.17 show the scatter plots of CBMnet,i vs. net violations

(Vnet,i) and CBMCnet,i vs. Vnet,i. These plots help one compare violations of the System

A and its coupling. The dots in these plots represent versions of System A. In both the

graphs, we observe that as coupling increased, violations also increased. This shows that
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the increase in coupling between modules and coupling between module classes resulted in

an opportunity of violations. The trend line in these graphs show coupling and violations

are related with each other.
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CHAPTER 7

CASE STUDY OF SYSTEM B

This chapter reports the System B case study. Section 7.1 gives the goals of the case

study. Section 7.2 describes the case and subjects who participated in the study. Section

7.3 presents the results and analysis of our research questions.

7.1 Objective

The goal of conducting this case study was to apply our methodology to a larger system,

collecting empirical evidence to address the research questions given in Section 1.2.

7.2 Case and subjects

The selection criteria for a case study and participants is given in Chapter 5. The

system under study was System B, which is a proprietary system developed by a research

center at Mississippi State University. The software component of System B is a mature,

online, integrated web solution providing workforce services to job seekers, employers

and state employment personnel. System B is the nexus of a dynamic relationship between

state workforce staff and the social scientists, data analysts, and software engineers of the

research center. System B has grown to include not only reporting and management tools,

but also complete web based self-service for employers and job seekers.
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We selected 14 released versions of System B to assess code decay. The participants

of this study were the software architect and a software developer for expert and evaluator

roles respectively. Our selection of the participants and different versions under study was

based on the selection criteria given in Section 5.3.1 in Chapter 5. The other details of

the System B are given in Table 7.1. The evolution of classes and interfaces over different

versions of the System B is shown in Figure 7.1 and Figure 7.2 respectively.

Table 7.1

Details of System B

Attribute Description
System System B
Time period August 2008– May 2014
Versions under study 14
LOC (version 14) 120k

7.3 Results and analysis

This section presents the results of the case study. We executed the methodology given

in Chapter 4. The researcher fulfilled the role of analyst.

7.3.1 Derive architectural constraints

This section presents the architectural constraints derived from System B by the par-

ticipants. At the beginning of the case study, the analyst provided the artifacts of the first

release of System B to the participants (expert and evaluator). These artifacts included

Java source code in the Eclipse IDE, a conceptual architecture, and a dependency structure
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The number of classes in System B per version
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The number of interfaces in System B per version
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matrix of the first release. The conceptual architecture and the dependency structure ma-

trix were derived from source code by Lattix. These artifacts are shown in Figure D.1 and

Figure D.2 in Appendix D.

During the start-up phase of LiSCIA the participants drew the high level architecture

of the given version of System B. They referred to the conceptual architecture and the de-

pendency structure matrix provided by the researcher. The high level architecture of the

system is shown in Figure D.3 in Appendix D. Then, the participants defined the compo-

nents of the system. The source code of the software was divided into the logical groups

of functionality. The participants divided the system into six components.

• Graphical User Interfaces (GUI)

• Input processing

• Persistence

• Security

• Utilities

• Reporting

For each component, the participants determined source files belong to it by defining a

pattern on the directory and file names of the source-files. In general, a single file should

only be matched to a single component, but in this case, the architecture was not well

defined for the project at the time of development, so the same name-pattern matches three

different components. The name-patterns for the components are the following.

• Graphical User Interfaces (GUI) — *.jsp

• Input processing —
webapp/*/*/*-*/*.xml, *validator.java, *validator.xml
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• Persistence

1. Model — model/*.java

2. Services — services/*.java

3. Lucene — dao/hibernate/*.java

• Security — security/*

• Utilities — util.*

• Reporting — reporting/*.java, reports/*.xml

The participants listed the technologies they used in developing the system. They used

MySQL, Hibernate, Spring, Maven, Lucene, Jackson (JSON), Apache Tiles, Apache Com-

mons, Apache HttpClient, Apache Taglibs, Liquibase, C3PO, JASPR, Castor, OpenLDAP,

DWR, JQuery, Ajax, Prototype, Script.aculo.us, DBUnit, Java.x.mail, Log4J, Display tag,

SLF4J, Axix, CGLib, WSDL4J, JavaAssist, and DB2.

In the evaluation phase of LiSCIA, the participants used the information from the start-

up phase to evaluate the architecture with a goal of deriving the architectural constraints.

The participants mostly concentrated on the evaluation of component dependencies. To

get the details of the dependencies, they used the dependency structure matrix given by the

analyst. The participants discussed circular dependencies, unexpected dependencies, and

which component depends on most of the other components. The participants listed the

following software architectural constraints represented by can-use or cannot-use phrases.

• Services can use model

• Model cannot use services

• Utils can be used statically anywhere

• GUI can use taglibs
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• Taglibs cannot use GUI

• taglibs cannot use services

• services cannot use converters

• framework cannot use services

• webservices cannot use reporting

• webservices cannot use taglib

• webservices cannot use dwr

• services can use dao

• services can use dao.hibernate

• dao cannot use services

• dao.hibernate cannot use services

• GUI cannot use services

• GUI cannot use dao

• GUI cannot use dao.hibernate

• Persistence cannot use services

• dao cannot use services package

• GenericHibernate class cannot use AuditService class

The only major architecture change occurred before release of the eighth version. New

architectural constraints were added and no constraints were removed from the earlier ar-

chitecture. The new constraints are given below.

• enum cannot use services

• enum cannot use dao

• enum cannot use listeners
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The above software architectural constraints were derived by the expert and evalua-

tor. Then, they were interviewed by the researcher for their feedback on the session. The

questions are listed in Table 5.1 in Chapter 5. The results of the interview session is dis-

cussed in Chapter 8. In this study, the roles of evaluator, expert, and analyst were fulfilled

by different individuals. An expert role was fulfilled by the architect of the project. The

expert of System B had 8 years of experience in developing several software systems in

Java. The evaluator, who participated in deriving the architectural constraints, had 9 years

of programing experience in Java. An evaluator role was fulfilled by the GUI and busi-

ness rules developer. Both the expert and the evaluator were very confident when deriving

the architectural constraints without missing any constraints. The time taken to derive the

constraints was 2 to 2.5 hours including the interview sessions. Once again the constraints

were reviewed by the expert to finalize them before discovering violations.

They suggested that a formal example of LiSCIA would be helpful to derive the con-

straints more quickly.

7.3.2 Discover architectural violations

Using the derived architectural constraints, an XML file was generated by Lattix by

manually entering the constraints, as input to Lattix. Lattix discovered candidate architec-

tural violations by comparing the the rules with the usage relationship between the source

and target represented by can-use or cannot-use phrases. Then, the expert validated the

violations. In this case, the expert didn’t change any constraints to accept any desirable
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features among those violations. The architectural violations we discovered fall into one

of the following five types.

• Class Reference — Reference to a class name

• Method call — The three subcategories in the method call are:

– Virtual (regular Java method)

– Static

– Interface (calling a method on a Java interface)

• Inheritance — The two subcategories in the inheritance category are:

– Inherits

– Implements

• Data Member Reference: Reference to a field in class or interface

• Constructs — The two subcategories of the constructor call category are:

– constructor without arguments

– constructor with arguments

The net violations (Vnet,i) for all the versions of System B were discovered by Lattix

and the values of Vnet,i are given in Table 7.2. Figure 7.3 shows that class reference type

of violations are the most numerous of violation in various versions of System B. Method

calls (virtual invocation) is second most numerous type of violation in System B. Null con-

structor, static, and extends types of violations are in order of highest to lowest percentage

of violations.

From the Figure 7.1 above, the growth in the number of classes increased over the first

seven releases. There was an increase of 168 classes from version 7 to version 8 and a

decrease of 68 classes from version 8 to version 9. Figure 7.4 shows that the number of

net violations also increased in the first seven versions of the system. Thereafter there was
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Table 7.2

Violations count over multiple versions of System B

Version i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Vnet,i 46 47 50 50 54 54 58 26 28 24 28 29 51 56
Vsolved,i 0 4 3 0 0 0 0 44 0 4 0 0 1 9
Vnew,i 46 5 6 0 4 0 4 12 2 0 4 1 23 14
Vreoccur,i 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Number of net violations in System B

a sudden decrease in number of violations. There was a major architecture change before

the eighth version which was created for both the application’s framework enhancements

and also for the initial development of the new business module called the Trade services

module. These framework enhancements were mainly aimed to reduce the number of

classes and the number of lines of code by consolidating classes, and re-using classes.

One such example is the Conversion classes which convert the data encapsulated in

an entity to a desired format. Initially the system had a ConversionService class

for each entity, but the developers had to keep on adding classes or additional lines of

code to implement different types of conversions for the same entity. So during the en-

hancements between versions 7 and 8, developers refactored the source code by deleting
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the ConversionService and opted for JSP tags to conditionally display the desired

format for each entity.

In the eighth version, the outcome of the framework enhancements reduced the number

of classes. But at the same time, the initial development of the Trade module brought in its

own classes. Later on, a spurt in the number of classes was the outcome of this combined

effort to enhance the framework and to add the functionality of the trade module.

The expert explained that the increase in the net violations from the twelfth version to

the thirteenth version was due to the following.

• Mostly new developers worked on this release.

• Their code review system was not strictly enforced.

• Limited time was allocated to design and analysis of the requirements.

7.3.3 Find new, solved, and reoccurred violations

After discovering the net violations (Vnet,i) in System B, we manually compared these

violations from one version to next version and found the new violations (Vnew,i), solved

violations (Vsolved,i), and reoccurred violations (Vreoccur,i). Table 7.2 shows the counts of

Vnew,i, Vsolved,i, and Vreoccur,i in all the versions of the System B. We assigned a unique

ID for each violation to track the life cycle of that violation in different versions. In this

study, once the violations were solved in a version, that violation did not reappeared in

later versions. Therefore Vreoccur,i is zero for all versions in this case study. Figure 7.5

shows the solved violations were very minimal before the eighth release. In the eighth

release, developers refactored the source code by deleting those method calls that causes

violations.
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In the release of eighth version, due to the framework enhancements, which included

changes to the architecture, there was an increase in the number of solved violations. Re-

organization of several classes solved 44 violations. Figure 7.5 shows that the new vio-

lations also increased during the eighth version, due to adding a new business module to

the system. In the later versions, the violations were removed in the source code because

developers refactored by deleting class references and virtual invocations.

Net violations/time gives insights about the product. 

 

 

Overall code decay:  
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Total time in work weeks                                           291 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

75 95 115 135 155 175 195 215 235 255 275 295

co
d

e 
d

ec
ay

 (
C

D
i)

 i
n

 

v
io

la
ti

o
n

s/
w

ee
k

Time (Ti) in work weeks

Major change in 

architecture

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16

N
u

m
b

er
 o

f 
v

io
la

ti
o

n
s

Version of System B

Solved Violations New Violations

Figure 7.5

New and solved violations in System B
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7.3.4 Assess code decay over multiple versions

The released dates of the versions of System B were collected from the revision control

system. For a given version i, the number of working days since the last release, time (ti)

in work weeks, and the cumulative development time from the beginning of the project

for each version (Ti), also in work weeks, were calculated as explained in Section 4.5

in Chapter 4. The values of ti and Ti for each version is shown in Table 7.3. We then

computed the code decay values for each version (cdi), the net code decay (CDi) using

Equations (4.3) and (4.4) respectively. The values of cdi and CDi are given in Table 7.4.

An ideal system follows all the architectural constraints without any architectural vio-

lations. Therefore the value of code decay for such system is 0 violations/week.

Figure 7.6 shows the code decay values (cdi) for rach release in System B. The cdi

measurements in this graph can give a manager insight into the the process of software

development. “Did the development of this version cause further code decay?” Before

major change in architecture of the system, the code decay value cdi varied from 0 to

1.25 violations/week. When compared to an ideal system, the code decay value (cdi) was

positive because of increase in the number of new violations compared to solved violations.

The System B expert explained that the developers focused on the functionality of the

software and not on the architectural constraints.

After the change in architecture before release 8, the code decay values (cdi) varies

from -0.59 to 1.18 violations/week. When compared to an ideal system’s code decay value

of 0 violations/week, the code decay value (cdi) of two versions in the System B after

change in architecture has negative values because that there were more solved violations
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than new violations. This is because the developers concentrated on the framework en-

hancements.
 

 

Code decay release by release. It gives the insights about the process. 
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Figure 7.6

Code decay for each release in System B

Figure 7.7 shows the net code decay (CDi) values of each version from the start date of

the project. The CDi measurements in the graph give a manager insight into the status of

the software product from its start date. “Is the product’s average code decay worse better

than the past version?” This graph gives the status of the software product from its start

date. The net code decay values are positive because it considers only net violations over

the time period since the beginning of the project Ti. The net code decay value decreased

after the change in architecture and was stable for later versions. For an ideal system, the

net code decay value is 0 violations/week.
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Net violations/time gives insights about the product. 
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Code decay since beginning of the System B

The overall code decay (CDn) of the System B at the end of the study period was 0.19

violations/week. The value of CDn was calculated using Equation (4.5) and the value is

given in Equation (7.1).

CDn =
121− 65

291
=

56

291
= 0.19 violations/week. (7.1)

This measure gives a value of code decay for the current system. “Does the current

system have unresolved violations and what has been the average rate of violations, namely

code decay?” There was on average, approximately one violation for every five weeks. To

bring the value of overall code decay value to 0 violations/week, developers could refactor

the source code according to the architectural constraints and remove the architectural

violations. Another option is to modify the constraints to accommodate any desirable
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features implemented in the source code. In this case study, the expert did not modify any

constraints to remove violations. The expert considered this as a technical debt [11, 12, 36,

49], planning to solve these violations in the future.

7.3.5 Comparision of results

This section presents measurements of coupling metrics (CBMC, CBM ) to compare

with code decay values. We chose coupling metrics to evaluate code decay results be-

cause Lindvall et al. claimed that increase in these metrics from one version to another

version results in architecture degeneration [39]. In this case study, we excluded all the

external library modules because it is expected that several modules use external libraries.

We considered a package to be a module. To drill down and conduct deeper analyses we

considered both CBM and CBMC metrics. When calculating the CBM and CBMC

values for nested packages, we considered all the packages to be at the same level. Ta-

ble 7.5 presents the values of coupling metrics of different versions of System B. These

values are calculated based on the formulas given in the Section 5.3.3 in Chapter 5. The

values of ti and Ti for each version is shown in Table 7.3. We analyze our results qualita-

tively, because the versions of the System B are not statistically independent samples and

are too few for statistical analysis. Therefore statistical analysis is not appropriate.

The graphs of net coupling between modules (CBMnet,i) and net coupling between

module classes (CBMCnet,i) over the versions of System B are shown in Figure 7.8 and

Figure 7.9 respectively. We observe that, the net CBM and CBMC values increased from

one version to the next version. A major change in architecture happened before the eighth
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release. A new module called the ‘trade’ module was added to the system which increased

the number of modules and classes of the System B. Thus, during the eighth release the

net values of CBM and CBMC also increased. The coupling metrics were stable for the

next three versions because the size of the system was also stable. During the versions 13

and 14, these values again increased because of the increase in modules and classes.

The scatter plots of net coupling metrics CBMnet,i, CBMCnet,i versus the size of the

System B showed in Figure 7.10 and Figure 7.11 respectively. The size of the system is the

sum of the total number of classes and interfaces in a given version of the system. These

plots help to compare the relation between size of the and coupling of System B. The dots

in these plots represent versions of System B. The linear trend line in these plots shows that

the coupling is related to the size of the system. As the system size increased CBMnet,i

and CBMCnet,i increased. Therefore as the size of the system increases there is more

opportunity for increase in coupling.

The code decay values (cdi) for each version is shown in Figure 7.6 above. We compare

the cdi values with the rate of change in coupling metrics (Rate∆CBMi and Rate∆-

CBMCi). Figure 7.12 and Figure 7.13 show the plots of Rate∆CBMi and Rate∆-

CBMCi over time. From the Figure 7.6 above, the code decay values of the versions

were positive before there was a change in architecture. This was because of an increase in

new violations (Vnew,i) which means the system was decaying. The code decay values of

two versions are negative after the change in architecture because of an increase in solved

violations Vsolved,i which indicates that the process in developing the system was getting

better.
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Now, let us compare these code decay values (cdi) with Rate∆CBMi and Rate∆-

CBMCi values. From the Figure 7.12, the Rate∆CBMi values for different versions

of System B are negative, zero, and positive values before and after the changes in the

architecture. The decrease in the Rate∆CBMi between the versions was good for the

system. But Rate∆CBMi results were not qualitatively correlated with the cdi results.

From the Figure 7.13, we observe that there were positive values of Rate∆CBMCi be-

fore the change in architecture which means the system’s coupling between module classes

increased between the versions. There was one negative and a zero Rate∆CBMCi value

for the versions after the change in architecture which indicates a decrease in coupling

between classes. The results of Rate∆CBMCi are not qualitatively correlated with cdi

results. Therefore for the System B, the results of Rate∆CBMi and Rate∆CBMCi are

inconsistent with cdi.

The net code decay (CDi) values of the System B are shown in Figure 7.7 were pos-

itive before and after the change in architecture. This is because we considered only net

violations (Vnet,i) at each version. We can observe that the CDi values were high before

the change in architecture and CDi values were low after the change in architecture. This

shows that the code decay of the system was reduced since the beginning of the project.

Figure 7.14 and Figure 7.15 show the results of RateCBMnet,i and RateCBMCnet,i

over time. These graphs resembles similar shape in the Figure 7.7. Both the values of

RateCBMnet,i and RateCBMCnet,i were positive and high before the change in archi-

tecture then these values were reduced after the change in architecture. Both the results of

RateCBMnet,i and RateCBMCnet,i were somewhat qualitatively correlated with the net
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code decay (CDi) results. Therefore for the system B, the results of RateCBMnet,i and

RateCBMCnet,i are consistent with CDi values.
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RateCBMnet,i since the beginning of the System B

Figure 7.16 and Figure 7.17 show the scatter plots of net coupling between mod-

ules (CBMnet,i ) vs. net violations (Vnet,i) and net coupling between module classes

(CBMCnet,i) vs. Vnet,i. These plots help to compare the relation between violations and

coupling (CBMnet,i and CBMCnet,i) of the System B. The dots in these plots represent

version of System B. From both the graphs we observe that as the coupling increases, vi-

olations may increase or decrease among the versions of System B. Moreover we see the

three clusters (first starting from version number 1 to 7, second from versions 8 to 12, and

third with 13 and 14 versions). The reason for the formation of first two clusters was the
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RateCBMCnet,i since the beginning of the System B

change in architecture reduced the number of net violations. For the third cluster, an in-

crease in functionality and changes in the GUI again increased the number of violations in

versions 13 and 14. From the Figure 7.16 and Figure 7.17 it is apparent that coupling and

violations are not related.

Let us consider the Figure 7.18 quadrants with architectural violations on the X-axis

and coupling on the Y-axis. Figure 7.18 shows that first quadrant has low coupling and few

architectural violations, the second quadrant has low coupling and a large number of archi-

tectural violations, the third quadrant has high coupling and few architectural violations,

and the fourth quadrant has high coupling and a large number of architectural violations.

From a software engineering perspective, the quadrants correspond to levels of software

quality.
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CBMCnet,i vs. net violations in System B
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Quadrants

From the Figure 7.16 and Figure 7.17, we can observe the clusters fall into different

quadrants which are given below.

• II quadrant — versions 1 to 7

• III quadrant — versions 8 to 12

• IV quadrant — versions 13 and 14
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This classification can help software engineering practitioners to improve their systems,

by recognizing versions with poor quality. To improve the System B after the version 14,

the developers could reduce coupling with architectural changes and solve architectural

violations. Therefore as the coupling increases there is an opportunity of increase in viola-

tions.
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CHAPTER 8

DISCUSSION

In this chapter, Section 8.1 presents answers to the research questions given in Sec-

tion 1.2 in Chapter 1. Section 8.2 presents implications of our research and Section 8.3

presents threats to validity.

8.1 Research questions revisited

This section discusses the answers to our research questions.

8.1.1 Deriving architectural constraints

This section answers our first research question.

Research Question 1: What is an effective method to derive architectural
constraints from the source code?

We conducted case studies on two proprietary systems. In each case study, we started

our code decay assessment by deriving the architectural constraints. We applied Lattix and

LiSCIA as a part of our methodology to derive architectural constraints. These constraints

are represented by can-use and cannot-use phrases. The expert of each system validated

our derived architectural constraints before discovering the architectural violations and

after discovering the architectural violations. The subjects who participated in our studies
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had software development experience varying from 3 to 8 years. The participants were

confident that they hit all the important constraints of packages or classes of the system.

Our participants did not include any constraints regarding extensions of classes from the

Spring framework since we were aware that several classes used external libraries. They

spent more time in evaluating the components section of the review phase of LiSCIA to

derive the constraints. They did not spend much time on other sections in the review phase

of LiSCIA. Some of the participants comments from the interview session are listed below.

• One of the participants mentioned that deriving the rules was easier since they used a
Model-View-Control (MVC) framework or architectural style in implementing their
system.

• The start-up phase of LiSCIA help participants to recall the design decisions that
happened in the past on other larger projects.

• Participants suggested having a formal example of LiSCIA to help speed the process
of learning our methodology for deriving architectural constraints.

• It was difficult for participants to define the components of the system, which are
logical functional units of the implemented system.

• They said that if they had followed the evaluation of components section in the re-
view phase of LiSCIA while developing the system, they would have followed all the
architectural constraints resulting in no architectural violations in the system.

Other researchers [6, 54] have analyzed the evolution of architectures by considering

the early version’s ‘uses’ relationships as their constraints or considering the architecture

style rules as their constraints. However, they did not concentrate on recovering archi-

tecture constraints from the implemented system. We propose a methodology that uses

LiSCIA and Lattix to derive architectural constraints from the implemented architectures.

Our results and qualitative analysis of the case studies showed that the methodology was

effective and required a practical level of effort for moderate sized software systems.

124



8.1.2 Discovering architectural violations

This section answers our second research question.

Research Question 2: What is an effective method to discover the extent of
violations in architectural constraints?

Our methodology includes the detection of architectural violations based on constraints

derived using LiSCIA. We used Lattix as a part of our methodology to detect architectural

violations. We validated the violations with the system experts. Violations may be resolved

if the expert modifies the architectural constraints for any implemented desirable features

that were flagged as violations. In our case studies, the experts did not choose to modify

the constraints while validating the violations.

We categorized the discovered violations and we found that ‘class reference’ type vi-

olations were the highest percentage among all the violations in both of our case studies.

Even though there were changes in the architecture of System A, the net violations Vnet,i

increased from one version to other version. However, in System B, the number of net

violations Vnet,i decreased after changes in the architecture.

Other architectural violations detection techniques used reflexion models [48], and

heuristics [43, 44]. Reflexion models require successive refinements in the high level ar-

chitecture, and heuristics use large threshold values and need several iterations to fix the

thresholds. However, these methods are time consuming because of several refinements

of high level architecture and several iterations to define threshold values. Our proposed

methodology has no threshold values and no refinements of high level architecture. Our

methodology also provides code decay assessment and is discussed in the next section.
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Our results and qualitative analysis showed that our methodology effectively detected

and validated the architectural violations for a given list of constraints expressed by can-use

and cannot-use phrases.

8.1.3 Assessing code decay

This section answers our third research question.

Research Question 3: What does the existence and repair of architectural
violations over time imply about code decay?

We introduced formulas to compute code decay values of the system. These formulas

are based on the net violations (Vnet,i) discovered using Lattix. First, find the new violations

(Vnew,i), solved violations (Vsolved,i), and reoccurred violations (Vreoccur,i) by comparing

the Vnet,i. The term ‘decay’ emphasize time, we considered the development time of the

systems using the released dates of the versions. Second, we computed the following code

decay values in violations per week.

• Code decay for a version (cdi) — This measure gives a manager insight into the
process of software development. “Did the development of this revision cause further
code decay?”

• Net code decay (CDi) — This measure gives a manager insight into the software
product from the beginning of the project. “Is the product’s average code decay
worse or better than the past version?”

• Overall code decay (CDn) — This measure gives a value of code decay for the
current system. “Does the current system have unresolved violations and what has
been the average rate of violations, namely code decay?”

For System A and System B, the values of cdi and CDi were fluctuating in the begin-

ning of the project and decreased at the end of the final version of the study. The increase
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in Vnew,i and decrease in Vsolved,i increased the code decay values. This means the exis-

tence of violations in the system increased the code decay values and solving or repairing

violations decreased the value of code decay. Comparing the CDn of System A (0.42 vi-

olations/week) and System B (0.19 violations/week), we conclude that System A decayed

faster than System B. The developer-driven and the process-driven reasons for code decay

in both the systems were the following.

• Process driven

– The code review system was not strictly enforced.

– Limited time allocation to design and analysis of the requirements.

– Change in requirements from the client.

– Project release deadlines.

• Developer driven

– Inexperienced or novice developers worked on few releases.

– Developers focused on pure functionality.

8.1.4 Comparison of results

This section answers our fourth research question.

Research Question 4: How does our definition of code decay compare to
definitions of code decay in the literature, specifically, is our definition of code
decay redundant with coupling metrics?

In their systematic mapping study of code decay, Bandi, Williams, and Allen [1] pre-

sented several metrics of code decay. Coupling related metrics were widely used in mea-

suring code decay. We evaluated our code decay results using coupling metrics (CBM and

CBMC) [39]. Since code decay is violations over time, we compared the rate of coupling
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growth to our code decay results. Coupling metrics were qualitatively partially correlated

with code decay results and were inconsistent for CBM and CBMC.

From the results of System A in Chapter 6, we observe that the Rate∆CBMi results

were not qualitatively correlated with the cdi results. Before version 5, the cdi values and

Rate∆CBMCi were not qualitatively correlated with each other. After the version 5, the

code decay cdi values somewhat qualitatively correlated with the Rate∆CBMCi values.

Therefore for System A, the results of Rate∆CBMi and Rate∆CBMCi are inconsistent

with cdi. The results of RateCBMnet,i and RateCBMCnet,i were qualitatively corre-

lated with the net code decay (CDi) results after the version 5 and were not qualitatively

correlated before version 5.

From the results of System B in chapter 7, we observe that the results of Rate∆CBMi

results were not qualitatively correlated with the cdi results. Also, The results of Rate∆CB-

MCi are not qualitatively correlated with cdi results. Therefore for the System B, the

results of Rate∆CBMi and Rate∆CBMCi are inconsistent with cdi. The results of

RateCBMnet,i and RateCBMCnet,i were somewhat qualitatively correlated with the net

code decay (CDi) results. The results of RateCBMnet,i and RateCBMCnet,i are con-

sistent with CDi values. Therefore for the system B, the results of RateCBMnet,i and

RateCBMCnet,i are consistent with CDi values.

We also observed from both of our case studies, as the size of the system increased,

coupling increased. This is to be expected because there are more components that need

connections. Coupling is an opportunity for violations (i.e. mistakes). Therefore as cou-
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pling increases we expect more violations. To improve the system, developers could reduce

coupling with architectural changes and solve architectural violations.

8.2 Implications

In general the term ‘decay’ means a gradual process that goes unnoticed until a crisis

occur. In software engineering, a major redesign or reengineering of the whole system is

a crisis. To prevent this, developers should concentrate on following the planned architec-

ture. Our methodology can help software engineering practitioners to assess code decay

version by version by deriving the constraints and following those constraints while devel-

oping versions and thus, prevent code decay. Similar case studies need to conducted to to

gather more empirical evidence on the practical aspects of assessing code decay.

8.3 Threats to validity

This section presents the threats to validity of our case studies.

• Construct Validity

– In our case studies we were limited to can-use and cannot-use architectural
relationships. There are other kinds of architectural rules also.

– We chose calender time to calculate the rate for code decay rather than other
measures of time (for example, level of developer’s effort).

• Internal validity

– Case studies do not control factors the way a controlled experiment does. Thus
our research questions did not explore cause-effect relationships.

• External validity

– Both of our case studies we selected were developed in the Java Spring frame-
work in the same organization. Both the systems are database intensive, web
browser interfaces and used by government clients. Our case study results (ar-
chitectural constraints, architectural violations, values of code decay, coupling
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measurements, and its graphs) cannot be generalized to all kinds of systems.
However, our methodology and code decay measurement techniques can repli-
cate on other systems.

• Statistical conclusion validity

– This kind of threat is not applicable for our research.
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CHAPTER 9

CONCLUSIONS

This chapter presents the conclusions, highlights the contributions of this dissertation

and presents some future research directions.

9.1 Conclusions

This section presents the conclusions of our research. The hypothesis of our research

is the following.

Given source code, a method can be developed to detect changes in the main-
tainability of a system by identifying the architectural violations over multiple
versions.

Maintainability is the degree of effectiveness and efficiency with which a product or

system can be modified by the intended maintainers [27]. We assume that architectural

violations degrade maintainability of software system.

Research Question 1: What is an effective method to derive architectural
constraints from the source code?

Using Lattix and LiSCIA, we developed a method to derive architectural constraints.

To evaluate the proposed methodology, we conducted two case studies where we validated

the derived architectural constraints with experts of the systems. Our empirical results and
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qualitative analysis showed that the methodology was effective and required a practical

level of effort for moderate sized software systems. This supported our hypothesis that

a method can be developed to derive the architectural constraints that define architectural

violations. Other researchers [6] used architecture documentation or the uses relationship

diagram of the older version of the system for considering the architectural constraints.

They didn’t use any formal method to derive architectural constraints.

Research Question 2: What is an effective method to discover the extent of
violations in architectural constraints?

Using Lattix we developed a method to discover architectural violations. To evaluate

the proposed methodology, we conducted two case studies where we validated the dis-

covered architectural violations with experts of the systems. Our results and qualitative

analysis showed that the methodology was effective in detecting architectural violations

for a given list of constraints that represent can-use and cannot-use rules. This supported

our hypothesis that a method can be developed to detect architectural violations.

‘Class reference’ was the major architectural violation category experienced in the case

study software systems. A large number of class reference violations in the software in-

creases undesirable coupling which makes the system hard to maintain.

Researchers used architecture conformance techniques such as reflexion models [48]

and heuristics [43, 44]. The disadvantages of reflexion model requires successive refine-

ments or iterations in the high level mental model to discover the absences and divergences

in the source code. The expressiveness of the reflexion models is limited to regular expres-

sions but no other types of rules. In addition, these models focus on the conformance of
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the design and implementation and do not deal with different architecture styles (e.g., lay-

ered architecture). On the other hand, the drawback of the heuristics technique is using

many threshold values in heuristics. This architecture conformance process based on the

proposed heuristics should follow an iterative approach — running the heuristics several

times, starting with rigid thresholds. After each execution, the new warnings should be

evaluated by the architect. The selecting of threshold values may takes several iterations.

Our methodology overcome these disadvantages.

Research Question 3: What does the existence and repair of architectural
violations over time imply about code decay?

New violations in a system increases the code decay values (cdi, CDi, and CDn) and

solving or repairing violations decreases the value of code decay. This supported our hy-

pothesis because degradation over multiple versions is key to the concept of “decay.” This

means that over time, the system becomes harder to change than it should be. Our results

showed that System A is decaying faster than System B. This also illustrates that systems

have various decay histories over time.

In the systematic mapping study of code decay, Bandi, Williams, and Allen [1] con-

cluded that the coupling related metrics were used to assess different forms of code decay.

This dissertation proposed a complementary and alternative approach to assess code decay

that uses architecture violations over development time and concluded that coupling is not

consistently related to architectural violations.
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Research Question 4: How does our definition of code decay compare to
definitions of code decay in the literature, specifically, is our definition of code
decay redundant with coupling metrics?

We compared our measure of code decay to measures proposed in the literature [39],

namely coupling metrics (coupling between modules (CBM ) and coupling between mod-

ule classes (CBMC)). The coupling metrics were sometimes qualitatively correlated with

code decay results and sometimes not. Trends were inconsistent in between CBM and

CBMC. In addition, our results showed that coupling metrics were qualitatively corre-

lated with the size of the system as expected. We note that coupling is an opportunity of

violations. We concluded that coupling is not consistently related to violations, and thus

not consistently related to code decay.

9.2 Contributions

Figure 9.1 shows a chart of our contributions. The contributions of this dissertation are

four fold.

1. We performed a literature review on code decay and conducted a systematic mapping
study on code decay that gives the classification of the code decay and its related
terms, classification of code decay detection techniques (human-based and metric-
based approaches), and the metrics used to measure the code decay.

2. We proposed a methodology to derive architectural constraints that uses a reverse
engineering tool and LiSCIA. In our case studies we used Lattix as our reverse engi-
neering tool.

3. We proposed a methodology that also uses a reverse engineering tool to discover
architectural violations and validate them. In our case studies we used Lattix as our
reverse engineering tool.

4. We also proposed an alternative and complementary method to assess code decay
which uses code decay indicator measures (cdi, CDi, and CDn). The empirical
evidence and qualitative assessment shows our methodology is practical for deriv-
ing architectural constraints, discovering architectural violations, and assessing code
decay.
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5. We qualitatively compared our code decay results with coupling metrics (CBM and
CBMC) and concluded that coupling is not consistently related to violations, and
thus not consistently related to code decay.

 

This Dissertation 
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mapping study 

Discover architectural 
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Methodology 
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Code decay 
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Qualitative 

evaluation with 

CBM & CBMC 

Figure 9.1

Contributions

9.3 Publications

This dissertation resulted in a peer reviewed conference paper which is given below

and Table 9.1 shows potential venues for publishing our research.

A. Bandi, B. J. Williams, and E. B. Allen, “Empirical evidence of code de-
cay: A systematic mapping study,” Proceedings: 20th Working Conference on
Reverse Engineering, pp. 341–350.

9.4 Future research directions

We identified the following research dimensions in the code decay area:

• There is need for research on automated detection techniques of code decay. Auto-
mated detection means automatic decision-making in identifying violations in archi-
tectural rules, design rules, and source code standards. There is a need to build au-
tomated classifiers that support developers in locating architecturally-relevant code
smells and detecting violations of architectural constraints.
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Table 9.1

Publication plan

Publication Venue Content to publish
Information and Software Technology Extended version of

systematic mapping study
International Conference on Program
Comprehension

Case study on deriving
architectural constraints

International Conference on Software
Analysis, Evolution, and Reengineering

Architecture violation
discovery methodology and
one case study

International Conference on Software
Maintenance

Assessing code decay over
multiple versions of software

Empirical Software Engineering Journal Content of dissertation

• Research should also be conducted to operationalize the various code decay related
terms to move toward a consensus in defining the phenomenon of code decay at
various levels of abstraction.

• There is a need for systematic literature reviews on architectural violations and de-
sign paradigms for identifying the best practice. The research focus must be in identi-
fying and minimizing code decay with respect to procedures, technologies, methods
or tools by aggregating information from empirical evidence.

• There is a demand for research and for building tools that support developers in
locating architecturally relevant code smells.

• There is a need for research to evaluate techniques to prevent code decay by iden-
tifying architecture and design rule violations at the time of check-in to the version
control system during the implementation phase of software development life cycle.

• Van Gurp and Bosch [68] indicate expressiveness of representing the architecture is
one of the research challenges of the large and complex systems.

• Applying the research on visual analytics to represent the software architectures and
to track the violations of the architecture over different versions of the system is
another important area of research.

• Research should also be conducted to find techniques for identifying the defect prone
source code areas in software using architectural violations. This can help in deter-
mine which part of source code can be refactored to reduce code decay.
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• An exploratory survey would be helpful to find insights of developers whether they
really care about architectural violations in software.

• Researchers should conduct case studies on deriving architectural constraints us-
ing other architectural relationships such as composition of modules, aggregation of
modules, and database relationships besides can-use and cannot-use relationships.

• Researchers could perform research to analyze the code decay of systems by con-
sidering the level of effort time of the developers on the project instead of calender
time.
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APPENDIX A

DETAILS OF MAPPING STUDY
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This Appendix presents the details of conducting our mapping study. Our mapping

study was published in an article by Bandi, Williams, and Allen [1].

A.1 Search strategy

The search was limited to the automated search techniques and did not performed man-

ual search because most of the conferences and journals related to our topic are included

in these electronic databases. In addition, we performed a bibliography check of every

primary study to include any additional relevant articles that focused on our research ques-

tions. The high-level search string with keywords and their synonyms is shown below.

(((software OR code OR architecture OR system OR design) AND (erosion
OR drift OR degeneration OR decay OR smell OR aging OR grime OR rot
OR violation*) AND (detect* OR measure* OR metric* OR assess* OR eval-
uat*)))

An asterisk (*) means any string. The search strategy is a trade-off between finding

all relevant primary studies from the results of the search string and finding too many

irrelevant studies. The different stages in our study are:

1. Search electronic databases using the above search string.

2. Eliminate irrelevant studies reviewing the titles and remove duplicate articles using
EndNote software.

3. Filter articles based on the abstracts, inclusion and exclusion criteria, and quality
assessment criteria.

4. Obtain primary studies and check the bibliography of primary studies to include any
additional appropriate studies.

To the best of our knowledge there were no earlier mapping studies or systematic re-

views conducted on code decay. Therefore the timeframe for our search was not limited
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and articles up to May 2013 were considered. After searching peer-reviewed papers from

the data sources and reviewing their titles, we exported only the relevant articles to End-

Note to organize our bibliography. We excluded several false positives that are not related

to software engineering by limiting the search topic to computer science and engineer-

ing. However, search engines are not sophisticated enough to get articles only relevant to

software engineering. Based on the titles, we manually excluded papers with a focus on

biology, mechanical, chemical and electric engineering topics. EndNote has an advanced

feature to remove duplicate articles based on the title, author names and conference titles.

After eliminating duplicate articles, there were 205 unique articles remaining.

A.2 Inclusion and exclusion criteria

The basis for selection of primary studies is the inclusion and exclusion criteria. During

this stage, we read all the abstracts to determine if the paper focused on identification or

empirical evaluation of code decay. We included a paper if it is focused on either on

identification or empirical evaluation of code decay. Of the 205 unique studies, 160 papers

were selected after a review based on abstracts.

Studies were included if they presented empirical evidence of code decay that includes

architecture and design rule violations. The term “decay” refers to the gradual decrease

in quality. Therefore, only studies that evaluated decay on more than one version of a

system developed over a period of time were included. Time is an important factor of

decay. So papers that only took a snapshot of a single version of a system were excluded.

Studies that concentrate on code decay detection techniques and analysis of metrics on
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proprietary or open source systems are included. Invited talks, expert opinions without

empirical evidence were excluded. Table A.1 shows the different criteria for inclusion and

exclusion of papers. From the 140 papers after abstract review, we applied our inclusion

and exclusion criteria and ended up with 49 papers.

A.3 Quality assessment criteria

Assessing quality criteria of studies important for rigor in selecting primary studies.

We defined quality assessment criteria similar to Dybå and Dingsøyr [15, 16] and applied

this criteria to the 49 papers resulting from inclusion and exclusion. We established quality

criteria based on the types of studies that will be included in the review. There are qual-

ity assessment criteria to assess case studies and archival analysis, controlled and quasi-

experiments, and peer-reviewed experience reports and surveys from industrial examina-

tions. Based on the guidelines and examples in the literature [15, 16, 29, 60] the quality

criteria checklist for different types of research studies are shown in Table A.2. The crite-

ria for the experience report papers are not as rigorous as the other criteria for experiments

and case studies. The primary focus for an experience report is peer-review and research

value. We applied the quality criteria uniformly for all the papers. The accepted papers

pass a specified number questions for the paper to be included in the primary studies. The

acceptance criteria is as follows: case studies, 6 of the 8 criteria required; controlled/quasi-

experiments 9 of the 11 criteria required; and experience reports, 3 out of 3 criteria re-

quired. Applying the quality criteria resulted in 27 primary studies. A bibliography check

of the primary studies led to 3 additional primary studies. The results of quality criteria
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Table A.1

Inclusion and exclusion criteria

Inclusion Exclusion
–Papers that detect code decay at any
level of abstraction (i.e., class,
package, subsystem, architecture,
and software system etc.)

–Studies focused on just one version
of the system

–Papers that identify procedures and
techniques for identifying code decay

–Papers that are based only on expert
opinion

–Studies of measurement / metrics
analysis of industrial and
open-source systems

–Invited talks, introductions to
special issues, tutorials, and
mini-tracks

–Empirical studies focused on code
decay in systems over time

–Studies presented in languages
other than English

–Empirical studies focused on
architectural violations in systems
over time

–Studies without any empirical
evidence

–Empirical studies focused on design
rule violations in systems over time
–Studies investigated on the systems
with more than one version/certain
period of development time.
–Evaluation of studies focused on
different versions of the system
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is shown in Tables A.3, A.4, and A.5. Most of the papers excluded during this stage were

idea-based and short papers.

A.4 Data extraction

Once the list of primary studies was decided, the data from the primary studies were

extracted. The extracted data from the studies were recorded in a separate Microsoft Excel

spreadsheet. Table A.6 provides the details of the data extraction form. This form facili-

tates collecting the data items specifically related to our mapping study research questions.

If the same study appeared in more than one publication, we included the most recent or

the most comprehensive version (i.e. the journal article). After applying the quality assess-

ment criteria, we divided the papers into two sets (70% and 30%). Two researchers studied

those papers in detail and independently extracted the data from those sets respectively

and then independently reviewed a sample of each other’s data extraction forms for con-

sistency. We used a third researcher’s opinion to resolve any inconsistencies. As a result

there were no disagreements on extracted data. During this process, after extracting the

data from sample of papers, new keywords are included in the search string if necessary.

A.5 Data mapping

The extracted data from the primary studies was mapped by identifying similarities in

the detection techniques and the metrics used in the detection process.
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Table A.2

Quality assessment criteria

Criteria Description if warranted C
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Is the paper based on
research (or is it
merely a position
statement based on
expert opinion)?

The paper provides empirical
evidence of claims made

Yes Yes Yes

Is there a clear
statement of the aims
of the research?

–The objectives of the
research are clearly defined
–The research questions
and/or hypotheses are clearly
stated

Yes Yes Yes

Is there an adequate
description of the
context in which the
research was carried
out?

–The authors provide a
description of the system,
organization and context of
the study e.g.,: Type of
system (e.g., proprietary or
open-source) Description of
system (e.g., size,
programming language)
–Description of development
environment (e.g., distributed,
global, co-located, team size)
and study setting (e.g.,
classroom, industry)

Yes Yes Yes

Was the research
design appropriate to
address the aims of
the research?

–The experiment design is
described in detail
–Type of study lends itself to
addressing the research
questions/hypothesis.

Yes Yes
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Table A.2

(continued)

Criteria Description if warranted C
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Was the recruitment
strategy appropriate to
the aims of the
research? (human
subjects)

Yes

Was there a control
group with which to
compare treatments?

The authors clearly identify
treatment and control
variables

Yes

Was the data collected
in a way that
addressed the research
issue?

–Described data collection
procedure
–Clear description and
presentation of metrics
–Explicit statement of data
collection methods
–Validation of results using
quality control methods

Yes Yes

Was the data analysis
sufficiently rigorous?

–In-depth description of the
analysis process
–Clear description of
statistical methods used to
evaluate metrics identified
–Appropriate use of statistical
methods
–Does the data support the
findings
–Deviations from hypotheses
reported

Yes Yes

Has the relationship
between researcher
and participants been
adequately
considered?

Yes

152



Table A.2

(continued)

Criteria Description if warranted C
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Is there a clear
statement of findings?

–Limitations and threats to
validity
–Outcomes are explicitly
quantified
–Research questions /
hypothesis discussed in
relation to findings
–Conclusions are justified by
the results
–An evaluation and analysis
of results provided

Yes Yes

Is the study of value
for research or
practice?

–Contributions and
implications of research
described
–Describe application to SE
practitioner and research
community
–Open research questions
identified
–Future work stated

Yes Yes Yes
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Table A.3

Quality assessment criteria results for case studies/archival studies
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[6] 1 1 1 1 1 1 1 1 8
[13] 1 1 1 1 1 1 1 1 8
[18] 1 1 1 1 1 1 1 1 8
[24] 1 1 1 1 1 1 1 1 8
[28] 1 1 1 0 0 1 1 1 6
[30] 1 1 1 1 1 1 1 1 8
[33] 1 1 1 1 1 1 1 1 8
[38] 1 1 1 1 1 1 1 1 8
[39] 1 1 1 1 1 1 1 1 8
[46] 1 1 1 1 1 1 1 1 8
[41] 1 1 1 1 1 1 1 1 8
[42] 1 1 1 1 1 1 1 1 8
[45] 1 1 1 1 1 1 1 1 8
[51] 1 1 1 1 1 1 1 1 8
[52] 1 1 1 1 1 1 1 1 8
[50] 1 1 1 1 1 1 1 1 8
[56] 1 1 1 1 1 1 1 1 8
[59] 1 1 1 1 1 1 1 1 8
[63] 1 1 1 1 1 1 1 1 8
[64] 1 1 1 1 1 1 1 1 8
[67] 1 1 1 1 1 1 1 1 8
[66] 1 1 1 1 1 1 1 1 8
[68] 1 1 1 1 1 1 1 1 8
[69] 1 1 1 1 1 1 1 1 8
[71] 1 1 1 1 1 1 1 1 8
[72] 1 1 1 1 1 1 1 1 8
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Table A.4

Quality assessment criteria results for controlled/quasi-experiments
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[62] 1 1 1 1 1 0 1 1 0 1 1 9
[58] 1 1 1 1 1 0 1 1 0 1 1 9

Table A.5

Quality assessment criteria results for experiences/surveys
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[5] 1 1 1 3
[8] 1 1 1 3
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Table A.6

Data extraction form

S.No Data item Description
Study citation
1 Bib code Unique identifier for the study
2 Date of data

extraction
3 Bibliography

information
Author, conference/journal, tile of the paper
and year

Study details
1 Objective What is the objective / goal of the study?
2 Design of study Describe the study design and type of study

(e.g., controlled experiment, survey, case
study, etc.)

3 Research
hypothesis

What are the research hypotheses and/or
research questions?

4 Definition of
code decay

Verbatim description from the study

5 Context of study Description of context (e.g., industrial/
proprietary/ open source, system size,
programming language,
distributed/global/co-located development
teams, team size, etc.)

6 Metrics of code
decay

What measures are used to assess code decay
and at what level of abstraction (e.g.,
architecture, class-level)?

7 Software tools for
code decay
analysis

What software tools are used (e.g., Coverity,
FindBugs)?

8 Techniques to
detect code decay

What detection methods are applied?

9 Data collection How the data is acquired?
10 Data analysis What statistical methods are used to analyze

data?
Study findings
1 Findings and

conclusions
What are the findings and conclusions of the
research?

2 Limitations Threats to validity
3 Significance Research and practice
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APPENDIX B

DETAILS OF LISCIA

157



Lightweight Sanity Check for Implemented Architectures (LiSCIA) overview and ques-

tionnaire is quoted with minor modifications from the dissertation of Eric Bouwers [4].

General overview. LiSCIA consist of two phases, a start-up phase and
a review phase. The start-up phase only needs to be conducted once during
the first evaluation of a system. The review phase should be conducted during
every evaluation.

Start-up Phase. The code of a system is divided into source files that en-
code some part of the functionality of the system. In order to have a good grasp
of the system we need to divide the code into logical groups of functionality.
Such a group of functionality is called a component.

A component can either represent some business functionality, such as Ac-
counting and Stocks, or a more technical functionality, such as GUI and XML-
processing. The evaluation can be applied to both decompositions. Also, the
evaluation can be applied to the same version of a system using different de-
compositions. In this way, different views on the architecture can be explored,
which can lead to more insight and a better understanding of the implemented
architecture.

Defining components. Make a list of logical groups of functionality that
should be in the system. This list of functionalities should contain about 5 to
10 different core-functionalities. Usual functionalities for a typical application
can be things such as User Interface, Input processing, Administration or Utili-
ties. Ideally, each core-functionality is a component within the system. If there
are more than 15 components try to group some of the components together.
For example, the components GUI for administrators and GUI for users can
be grouped into a component GUI. If there is already a list of components in
the documentation this list can be used.

Defining name-patterns. For each component, try to determine which
source files belong to it by defining a pattern on the directory-/file-names of
the source-files. For example, all files that implement the GUI are in a subdi-
rectory called GUI, the name-pattern for this component then becomes: Com-
ponent GUI, name-pattern = .*/GUI/.* Note that the name-patterns for the
components should be exclusive. In other words, a single file should only be
matched to a single component.

Inventory of Technologies. Determine the technologies used within the
system by:

• Listing all different file-extensions used in the system

• Mapping each file-extension to a technology

Review Phase.
Evaluation of Source Groups. Determine whether all source-files in the

system belong to a component by applying the name-patterns to the sources in

158



the system. All source files that cannot be placed under a component fall into
one of the following two categories:

• Code that can be removed because it does not implement any functional-
ity

• Code that should be put under a, possibly new, component

When code should be put into an existing component answer the following
questions:

1. Should the name-pattern be expanded or should the code be relocated on
the file-system?

2. Why does the code fall outside of its desired component?
When code should be put into a new component, answer the following
questions:

3. Why has this component only surfaced now?

4. Is it likely that more components will emerge?

Evaluation of Component Functionality. Answer the following ques-
tions about the way the sources are grouped into the components:

1. Are the name-patterns defined for the components straightforward or
complicated? In other words, are the sources located in the file-system
according to the components or according to a different type of decom-
position?

2. Is all functionality that is needed from the system available in the com-
ponents?

3. Can the functionality of each component be described in a single sen-
tence? If not, why?

4. Do multiple components implement the same functionality? (For exam-
ple, do two components parse the same messages?)

5. Does any component contain functionality that is also available in a li-
brary/framework? If so, why is this library/framework not used?

Evaluation of Component Size. Determine the size of each component
by counting the lines of code for each file, and then summing up the lines of
code of all files in a component. Answer the following questions about the
size of the components:

1. Are the sizes of the components evenly distributed?

2. If not, what is the reason for this uneven distribution?

3. Is the reason in-line with the expectations about the functionality?
When previous results are available:
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4. Which component has grown the most? Is this to be expected?

5. Which component has been reduced the most? Is this to be expected?

6. Is the ordering of components on size heavily changed? Is this to be
expected?

Evaluation of Component Dependencies. Determine the dependencies
between components by determining the dependencies on file-level (or lower).
After this, for each dependency between two files, determine the components
of the files. If no dependency between the components existed, add this depen-
dency, otherwise add an extra weight to the dependency. Answer the following
questions about the dependencies between components:

1. Are there any circular dependencies between the components? If so,
why? List those constraints.

2. Are there any unexpected dependencies between components? List those
constraints

3. Which component depends on most other components, is this to be ex-
pected?

4. Which component is the most depended on (which component has the
most incoming dependencies)? Is this to be expected?
When previous results are available:

5. Are there any new dependencies? Is this to be expected?

6. Are there any dependencies that were removed? Is this to be expected?

Evaluation of Technologies. Answer the following questions about the
technologies:

1. Is each technology needed in the system? Can the functionality be en-
coded in a different technology that is used in the system?

2. Is each technology being used for the purpose it was designed for?

3. Is the combination of technologies common? Does the official documen-
tation of the technologies mention the other technologies?

4. Is each technology still supported by an active community or vendor?

5. Are the latest versions for each technology used? If not, why?
When previous results are available:

6. Are there any new technologies added? If so, why?

7. Are there any technologies that were discarded? If so, why?
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APPENDIX C

SYSTEM A ARTIFACTS
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Figure C.1

System A conceptual architecture
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Figure C.2

System A dependency structure matrix
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Figure C.3

System A high level architecture diagram by participants
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APPENDIX D

SYSTEM B ARTIFACTS
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Figure D.1

System B conceptual architecture
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Figure D.2

System B dependency structure matrix
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Figure D.3

System B high level architecture diagram by participants
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APPENDIX E

SOURCE CODE
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E.1 Source code for CBMCCalculator

This section presents the source to calculate CBMC values.

package coupling;

import java.io.File;
import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;

public class CBMCCalculator {
/**
* @param args

* @throws FileNotFoundException

*/
public static void main(String[] args) throws

FileNotFoundException {

ArrayList<String> sourceList = new ArrayList<String>();
ArrayList<String> targetList = new ArrayList<String>();
ArrayList<String> sourcePackages = new ArrayList<String>();
ArrayList<String> targetPackages = new ArrayList<String>();

// Input from text file
Scanner myScanner = new Scanner(new File("exam"));

// Read from the text file
String line;

//Populate the source and target lists
while(myScanner.hasNext()){
line = myScanner.next();
String source = line.substring(0, line.indexOf(’,’));
String target = line.substring(line.indexOf(’,’)+1);
sourceList.add(source);
targetList.add(target);
}//end while
myScanner.close();

//Remove bidirectional uses.
removeBidirectionalUses(sourceList, targetList);
//remove intra coupling
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ArrayList<String> list = removeIntraUses(sourceList, targetList,
sourcePackages, targetPackages);

System.out.println("********Printing CBMC values********");
int tcbmc = computeCBMC(list);
int totalCBMC = tcbmc/2 ;
System.out.println("Total CBM: "+ totalCBMC);
}//end main

/**
*
* @param sourcePackages

*/
private static int computeCBMC(ArrayList<String> sourcePackages) {
Set<String> uniqueSet = new HashSet<String>(sourcePackages);
int cbmc = 0;
for (String temp : uniqueSet) {
System.out.println(temp + ": " +

Collections.frequency(sourcePackages, temp));
cbmc = cbmc + Collections.frequency(sourcePackages, temp);
}
return cbmc;
}

/**
*
* @param sourceListIn

* @param targetListIn

* @param sourcePackagesIn

* @param targetPackagesIn

* @returnList with all the source and targets after removing

*intra uses (duplicates and crisscross)

*/
private static ArrayList<String> removeIntraUses
(ArrayList<String> sourceListIn, ArrayList<String> targetListIn,
ArrayList<String> sourcePackagesIn,
ArrayList<String> targetPackagesIn ){

ArrayList<String> finalList = new ArrayList<String>();
ArrayList<String> newSourceList = new
ArrayList<String>(sourceListIn);
ArrayList<String> newTargetList = new
ArrayList<String>(targetListIn);
ArrayList<Integer> flagList = new ArrayList<Integer>();
//System.out.println("Old source list Size: "+
sourceListIn.size());

171



//System.out.println("New source list Size: "+
newSourceList.size());
for (int i = 0; i < newSourceList.size(); i++) {
flagList.add(0);
}
for(int i=0; i<newSourceList.size(); i++){
String sourcePackage = getPackageName(newSourceList.get(i));
String targetPackage = getPackageName(newTargetList.get(i));
sourcePackagesIn.add(sourcePackage);
targetPackagesIn.add(targetPackage);
if(sourcePackage.contains(targetPackage) ||
targetPackage.contains(sourcePackage)){
//this means remove the element from the arraylist.
flagList.set(i, -1);
}
}

for(int i=0; i<flagList.size();i++){
System.out.println(flagList.get(i));
}

for(int i=0; i<flagList.size();i++){
int flag = flagList.get(i);
if (flag == -1){
System.out.println("source: "+newSourceList.get(i));
System.out.println("target: "+newTargetList.get(i));
}
else{
//add package names to source lists.
finalList.add(sourcePackagesIn.get(i));
finalList.add(targetPackagesIn.get(i));
}
}
return finalList;
}

/**
* getUnidirectional values.

* @param sourceList

* @param targetList

*/
private static void removeBidirectionalUses(ArrayList<String>
sourceList,
ArrayList<String> targetList) {
//Checking for criss cross elements
for(int i=0; i<targetList.size();i++){
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String target = targetList.get(i);
for(int j=i+1; j<=sourceList.size()-1;j++){
String source = sourceList.get(j);
//Check whether the target is in source
if(compareNodes(target,source)){
//Now check whether the source is in target
if(compareNodes(sourceList.get(i), targetList.get(j))){
sourceList.remove(j);
targetList.remove(j);
}
}
}//end for:j
}//end for:i

//Checking for same elements.
for(int i=0; i<sourceList.size(); i++){
String source1 = sourceList.get(i);
String target1 = targetList.get(i);
for(int j=i+1; j<=sourceList.size()-1; j++){
String source2 = sourceList.get(j);
String target2 = targetList.get(j);
if(source1.equals(source2) && target1.equals(target2)){
sourceList.remove(j);
targetList.remove(j);
}//end if
}//end for:j
}//end for:i
}//end method: removeBidirectionalUses

/**
*
* @param source

* @param target

* @return

*/
public static boolean compareNodes(String source, String target){
if(source.equals(target)) return true;
else return false;
}

/**
*
* @param list

*/
public static void print(ArrayList<String> list){
for(int i=0; i<list.size(); i++){
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System.out.println(list.get(i));
}
}

/**
*
* @param element

* @return

*/
public static String getPackageName(String element){
String sub = element.substring(0,element.lastIndexOf("."));
String packageName = sub.substring(sub.lastIndexOf(".")+1);
return packageName;
}
}

E.2 Source code for CBMCalculator

This section presents the source to calculate CBM values.

package coupling;

import java.io.File;
import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;

public class CBMCalculator {
public static void main(String[] args) throws
FileNotFoundException {
ArrayList<String> sourceList = new ArrayList<String>()
ArrayList<String> targetList = new ArrayList<String>();

// Input from text file
Scanner myScanner = new Scanner(new File("exam"));
// Read from the text file
String line;

//Populate the source and target lists
while(myScanner.hasNext()){
line = myScanner.next();
String source = line.substring(0, line.indexOf(’,’));
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String target = line.substring(line.indexOf(’,’)+1);
sourceList.add(source);
targetList.add(target);

}//end while
myScanner.close();

removeBidirectionalUses(sourceList, targetList);
int sCBM= computeCBM(sourceList);
int tCBM = computeCBM(targetList);
int totalCBM = (sCBM+tCBM)/2 ;
System.out.println("Total CBM: "+ totalCBM);
}

private static int computeCBM(ArrayList<String>
sourceListIn) {
Set<String> uniqueSet = new HashSet<String>(sourceListIn);
int cbm = 0;
for (String temp : uniqueSet) {
System.out.println(temp + ": " +
Collections.frequency(sourceListIn, temp));
cbm = cbm + Collections.frequency(sourceListIn, temp);
}

return cbm;
}

/**
* getUnidirectional values.

* @param sourceList

* @param targetList

*/
private static void removeBidirectionalUses(ArrayList<String>
sourceList,
ArrayList<String> targetList) {
//Checking for criss cross elements
for(int i=0; i<targetList.size();i++){
String target = targetList.get(i);
for(int j=i+1; j<=sourceList.size()-1;j++){
String source = sourceList.get(j);
//Check whether the target is in source
if(compareNodes(target,source)){
//Now check whether the source is in target
if(compareNodes(sourceList.get(i), targetList.get(j))){
//System.out.println(i+" "+j);
sourceList.remove(j);
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targetList.remove(j);
}
}
}
}
//Checking for same elements.
for(int i=0; i<sourceList.size(); i++){
String source1 = sourceList.get(i);
String target1 = targetList.get(i);
for(int j=i+1; j<=sourceList.size()-1; j++){
String source2 = sourceList.get(j);
String target2 = targetList.get(j);
if(source1.equals(source2) && target1.equals(target2)){
sourceList.remove(j);
targetList.remove(j);
}
}
}
}

public static boolean compareNodes(String source,
String target){
if(source.equals(target)) return true;
else return false;
}

public static void print(ArrayList<String> list){
for(int i=0; i<list.size(); i++){
System.out.println(list.get(i));
}
}
}
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